W. B. Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schulz, J. F. Miller,
E. Burke, and N. Jonoska (eds.):
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002),
San Francisco (CA): Morgan Kaufmann Publishers 2002.
T. Bartz-Beielstein, G. Jankord, B. Naujoks, G. Rudolph, and K. Schmitt (eds.):
Festschrift Hans-Paul Schwefel 2006, Universität Dortmund, Dortmund 2006 (ISBN 3-921823-34-X).
T. Bartz-Beielstein, M.J. Blesa Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph, M. Samples (eds.):
Hybrid Metaheuristics, Proceedings of the 4th International Workshop (HM 2007),
Lecture Notes in Computer Science Vol. 4771,
Springer: Berlin and Heidelberg 2007.
G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume (eds.):
Proceedings of the 10th International Conference on Parallel Problem Solving from Nature - PPSN X,
Lecture Notes in Computer Science Vol. 5199, Springer:
Berlin and Heidelberg 2008.
R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph (eds.):
Proceedings of the 11th International Conference on Parallel Problem Solving from Nature - PPSN XI,
Lecture Notes in Computer Science Vol. 6238 & 6239, Springer:
Berlin and Heidelberg 2010.
H. Trautmann, G. Rudolph, K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, and C. Grimme (eds.):
Proceedings of the 9th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2017),
Lecture Notes in Computer Science Vol. 10173, Springer, 2017.
G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, T. Tusar (eds.):
Proceedings of the 17th International Conference on Parallel Problem Solving from Nature - PPSN XVII,
Lecture Notes in Computer Science Vol. 13898 & 13899, Springer:
Berlin and Heidelberg 2022.
Edited Special Issues in Journals
A.E. Eiben and G. Rudolph (guest eds.): Special issue on "Theory of Evolutionary Algorithms".
Theoretical Computer Science 229(1), 1999.
M. Laumanns, S. Mostaghim, G. Rudolph, and J. Teich (guest eds.):
Special issue on "Evolutionary Multiobjective Optimization".
International Journal of Computational Intelligence Research 2(3), 2006.
O. Kramer, C. Igel, and G. Rudolph (guest eds.): Special issue on "Evolutionary Kernel Machines".
Evolutionary Intelligence 5(3), 2012.
S. Greco, K. Klamroth, J. Knowles, and G. Rudolph (guest eds.): Special issue in "Understanding Complexity in Multiobjective Optimization".
Journal of Multi-Criteria Decision Analysis 24(1/2), 2017.
N. Beume, B. Naujoks, and G. Rudolph:
SMS-EMOA: Effektive evolutionäre Mehrzieloptimierung, Automatisierungstechnik (at) 56(7):357-364, 2008.
Zhiyong Li, G. Rudolph, and Kenli Li: Convergence performance comparison of quantum-inspired multi-objective evolutionary algorithms,
Computers and Mathematics with Applications 57(11/12):1843-1854, 2009.
H. Blume, B. Bischl, M. Botteck, C. Igel, R. Martin, G. Rötter, G. Rudolph, W. Theimer, I. Vatolkin, and C. Weihs: Huge Music Archives on Mobile Devices, IEEE Signal Processing Magazine 28(4):24-39, 2011.
I. Vatolkin, M. Preuß, G. Rudolph, M. Eichhoff, and C. Weihs: Multi-Objective Evolutionary Feature Selection for Instrument Recognition in Polyphonic Audio Mixtures,
Soft Computing 16(12):2027-2047, 2012. Online: DOI 10.1007/s00500-012-0874-9 .
G. Rudolph, H. Trautmann, and O. Schütze:
Homogene Approximation der Paretofront bei mehrkriteriellen Kontrollproblemen.
Automatisierungstechnik (at) 60(10):612-621, 2012.
A. Agapie, M. Agapie, G. Rudolph, and G. Zbaganu:
Convergence of Evolutionary Algorithms on the n-dimensional Continuous Space.
IEEE Transactions on Cybernetics 43(5):1462-1472, 2013.
J. Quadflieg, M. Preuss, and G. Rudolph:
Driving as a human: a track learning based adaptable architecture for a car racing controller.
Genetic Programming and Evolvable Machines 15(2):433-476, 2014. (DOI 10.1007/s10710-014-9227-z)
S. Wessing, G. Rudolph, S. Turck, C. Klimmek, S. C. Schäfer, M.Schneider, and U. Lehmann:
Replacing FEA for sheet metal forming by surrogate modeling,
Cogent Engineering 1:950853, 2014. (DOI http://dx.doi.org/10.1080/23311916.2014.950853)
Shaomiao Chen, Zhiyong Li, Bo Yang, and G. Rudolph:
Quantum-inspired Hyper-heuristics for Energy-aware Scheduling on Heterogeneous Computing Systems.
IEEE Transactions on Parallel & Distributed Systems 27(6):1796-1810, 2016 (doi: 10.1109/TPDS.2015.2462835).
G. Rudolph, O. Schütze, C. Grimme, C. Dominguez-Medina, and H. Trautmann:
Optimal Averaged Hausdorff Archives for Bi-objective Problems: Theoretical and Numerical Results.
Computational Optimization and Applications 64(2):589-618, 2016
(doi: 10.1007/s10589-015-9815-8).
O. Schütze, V. A. Sosa Hernández, H. Trautmann, and G. Rudolph:
The Hypervolume based Directed Search Method for Multi-Objective Optimization Problems.
Journal of Heuristics 22(3), 273-300, 2016 (doi: 10.1007/s10732-016-9310-0).
G. Rudolph and S. Wessing:
Linear Time Estimators for Assessing Uniformity of Point Samples in Hypercubes.
Informatica 27(2):335-349, 2016 (doi: 10.15388/Informatica.2016.88).
K. Klamroth, S. Mostaghim, B. Naujoks, S. Poles, R. Purshouse, G. Rudolph, S. Ruzika, S. Sayìn, M. M. Wiecek, and X. Yao:
Multiobjective Optimization for Interwoven Systems,
Journal of Multi-Criteria Decision Analysis 24(1-2):71-81, 2017 (doi: 10.1002/mcda.1598).
C. Jung, M. Zaefferer, T. Bartz-Beielstein, and G. Rudolph:
Meta-model based Optimization of Hot Rolling Processes in the Metal Industry,
International Journal of Advanced Manufacturing Technology 90(1-4):421-435, 2017 (doi: 10.1007/s00170-016-9386-6).
F. Ostermann, I. Vatolkin, and G. Rudolph:
Evaluating Creativity in Automatic Reactive Accompaniment of Jazz Improvisation,
Transactions of the International Society for Music Information Retrieval 4(1):210–222, 2021.
DOI: http://doi.org/10.5334/tismir.90
F. Rehbach, M. Zaefferer, A. Fischbach, G. Rudolph, Th. Bartz-Beielstein:
Benchmark-Driven Configuration of a Parallel Model-Based Optimization Algorithm,
IEEE Transactions on Evolutionary Computation 26(6):1365-1379, 2022.
Contributions to edited works (not available online, sorry!)
G. Rudolph:
Evolution Strategies, pp. B1.3.1-6,
in T. Bäck, D.B. Fogel, and Z. Michalewicz (eds.): Handbook of Evolutionary Computation,
IOP Publishing and Oxford University Press: Bristol and New York 1997.
Also published on pp. 81-88 in T. Bäck et al. (eds):
Evolutionary Computation 1 - Basic Algorithms and Operators, IOP Publishing; Bristol 2000.
G. Rudolph:
Stochastic Processes, pp. B2.2.1-8,
in T. Bäck, D.B. Fogel, and Z. Michalewicz (eds.): Handbook of Evolutionary Computation,
IOP Publishing and Oxford University Press: Bristol and New York 1997.
G. Rudolph:
Modes of Stochastic Convergence, pp. B2.3.1-3,
in T. Bäck, D.B. Fogel, and Z. Michalewicz (eds.): Handbook of Evolutionary Computation,
IOP Publishing and Oxford University Press: Bristol and New York 1997.
G. Rudolph:
Local Performance Measures: Genetic Algorithms, pp. B2.4.20-27,
in T. Bäck, D.B. Fogel, and Z. Michalewicz (eds.): Handbook of Evolutionary Computation,
IOP Publishing and Oxford University Press: Bristol and New York 1997.
G. Rudolph and J. Ziegenhirt:
Computation time of evolutionary operators, pp. E2.2.1-4,
in T. Bäck, D.B. Fogel, and Z. Michalewicz (eds.): Handbook of Evolutionary Computation,
IOP Publishing and Oxford University Press: Bristol and New York 1997.
Also published on pp. 247-252 in T. Bäck et al. (eds):
Evolutionary Computation 2 - Advanced Algorithms and Operators, IOP Publishing; Bristol 2000.
S. Droste, Th. Jansen, G. Rudolph H.-P. Schwefel, K. Tinnefeld, and I.Wegener:
Theory of evolutionary algorithms and genetic programming, pp. 107-144 in H.-P. Schwefel, I. Wegener und K. Weinert (eds.):
Advances in Computational Intelligence. Springer, Berlin und Heidelberg 2003.
G. Rudolph:
Parallel Evolution Strategies, pp. 155-169 in E. Alba (ed.):
Parallel Metaheuristics: A New Class of Algorithms. Wiley: Hoboken (NJ) 2005.
G. Rudolph and H.-P. Schwefel: Simulated Evolution under Multiple Criteria Revisited,
pp. 248-260 in J.M. Zurada et al. (eds.): WCCI 2008 Plenary/Invited Lectures, Springer: Berlin 2008.
E.-G. Talbi, S. Monastghim, T. Okabe, H. Ishibuchi, G. Rudolph, and C.A. Coello Coello:
Parallel Approaches for Multiobjective Optimization, pp. 349-372 in J. Branke et al. (eds):
Multiobjective Optimization - Interactive and Evolutionary Approaches, Springer: Berlin 2008.
G. Rudolph: Evolutionary Strategies, pp. 673-698 in G. Rozenberg, T. Bäck, and J.N. Kok (eds.):
Handbook
of Natural Computing. Springer, 2013.
G. Rudolph: Stochastic Convergence, pp. 847-869 in G. Rozenberg, T. Bäck, and J.N. Kok (eds.):
Handbook
of Natural Computing. Springer, 2013.
I. Vatolkin, B. Bischl, G. Rudolph, and C. Weihs:
Statistical Comparison of Classifiers for Multi-objective Feature Selection in Instrument Recognition,
pp. 171-178 in M. Spiliopoulou, L. Schmidt-Thieme and R. Janning (eds.):
Data Analysis, Machine Learning and Knowledge Discovery,
Springer, 2014.
M. Preuss, S. Wessing, G. Rudolph, and G. Sadowski:
Solving Phase Equilibrium Problems by Means of Avoidance-based Multiobjectivization,
pp. 1159-1171 in J. Kacprzyk and W. Pedrycz (eds.):
Springer Handbook of Computational Intelligence. Springer, 2015.
S. Wessing, G. Rudolph, and M. Preuss:
Assessing Basin Identification Methods for Locating Multiple Optima, pp. 53-69
in P. M. Pardalos, A. Zhigljavsky, and J. Žilinskas (eds.):
Advances in Stochastic and Deterministic Global Optimization,
Springer, 2016.
V. A. Sosa-Hernandez, A. Lara, H. Trautmann, G. Rudolph, and O. Schütze:
The Directed Search Method for Unconstrained Parameter Dependent Multi-Objective Optimization Problems,
pp. 281-330 in
O. Schütze et al. (eds.): Numerical and Evolutionary Optimization - NEO 15,
Results of the Numerical and Evolutionary Optimization Workshop NEO 2015,
Springer International, 2017.
G. Rudolph:
Digital Representation of Music,
pp. 177-196 in
C. Weihs et al. (eds.): Music Data Analysis: Foundations and Applications,
CRC Press, 2017.
G. Rudolph:
Optimization,
pp. 263-282 in
C. Weihs et al. (eds.): Music Data Analysis: Foundations and Applications,
CRC Press, 2017.
G. Rudolph:
Parallel Approaches to Stochastic Global Optimization,
pp. 256-267 in W. Joosen and E. Milgrom (eds.): Parallel Computing: From Theory to Sound Practice,
Proceedings of the European Workshop on Parallel Computing (EWPC 92),
Amsterdam: IOS Press 1992.
G. Rudolph:
Convergence of Non-Elitist Strategies,
pp. 63-66 in: Proceedings of the First IEEE Conference on Evolutionary Computation, Vol. 1, Piscataway, NJ: IEEE Press 1994.
H.-P. Schwefel and G. Rudolph:
Contemporary Evolution Strategies,
pp. 893-907 in F. Morana et al. (eds.): Advances in Artificial Life. Berlin: Springer 1995.
(revised version)
G. Rudolph:
On Takeover Times in Spatially Structured Populations: Array and Ring,
pp. 144-151 in K. K. Lai, O. Katai, M. Gen, and B. Lin (eds.):
Proceedings of the 2nd Asia-Pacific Conference on Genetic Algorithms and Applications,
Hong Kong: Global-Link Publishing Company 2000.
G. Rudolph:
Evolutionary Search under Partially Ordered Fitness Sets,
pp. 818-822 in M.F. Sebaaly (ed.): Proceedings of the International NAISO Congress on Information Science Innovations (ISI 2001),
ICSC Academic Press: Millet/Sliedrecht 2001. (ISBN 3-906454-25-8)
G. Rudolph:
A Partial Order Approach to Noisy Fitness Functions, pp. 318-325 in:
J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.):
Proceedings of the 2001 IEEE Congress on Evolutionary Computation (CEC 2001), IEEE Press, Piscataway (NJ) 2001.
M. Laumanns, G. Rudolph, and H.-P. Schwefel:
Mutation Control and Convergence in Evolutionary Multi-Objective Optimization,
pp. 24-29 in R. Matousek and P. Osmera (eds.): Proceedings of the 7th International Conference on Soft Computing (MENDEL 2001),
Brno University of Technology, Brno, Czech Republic, 2001. (ISBN 80-214-1894-X)
F. Hoffmann, T. Nierobisch, T. Seyffarth, and G. Rudolph:
Visual Servoing with Moments of SIFT Features, pp. 4262-4267 in:
Proceedings of the 2006 IEEE Conference on Systems, Man, and Cybernetics (IEEE SMC 2006),
IEEE Press: Piscataway (NJ) 2006.
G. Rudolph:
Takeover Time in Parallel Populations with Migration, pp. 63-72 in:
B. Filipic and J. Silc (eds.):
Proceedings of the Second International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2006),
Josef Stefan Institute: Ljubljana 2006.
G. Rudolph:
Deployment Scenarios of Parallelized Code in Stochastic Optimization, pp. 3-11 in:
B. Filipic and J. Silc (eds.):
Proceedings of the Second International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2006),
Josef Stefan Institute: Ljubljana 2006. (Remark: invited paper)
N. Beume and G. Rudolph:
Faster S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem, pp. 231-236 in:
B. Kovalerchuk (ed.): Proceedings of the Second IASTED Conference on Computational Intelligence,
ACTA Press: Anaheim 2006. Extended version:
Technical Report CI-216/06, SFB 531, University of Dortmund, June 2006.
R. Klinger and G. Rudolph:
Evolutionary Composition of Music with Learned Melody Evaluation, pp. 234-239 in
N. Mastorakis and A. Cecchi (Eds.):
Proceedings of the 5th WSEAS Int. Conf. on Computational Intelligence, Man-Machine Systems and Cybernetics, 2006.
Best student paper award (R. Klinger).
G. Rudolph, B. Naujoks, and M. Preuss:
Capabilities of MOEA to Detect and Preserve Equivalent Pareto Subsets, pp. 36-50 in
S. Obayashi et al. (eds.): Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization
(EMO 2007), Springer: Berlin 2007.
N. Beume, B. Naujoks, M. Preuss, G. Rudolph, and T. Wagner:
Effects of 1-Greedy S-Metric-Selection on Innumerably Large Pareto Fronts,
pp. 21-35 in M. Ehrgott et al. (eds.):
Proceedings of 5th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2009),
Springer: Berlin and Heidelberg 2009.
O. Kramer, A. Barthelmes, and G. Rudolph:
Surrogate Constraint Functions for CMA Evolutions Strategies,
pp. 169-178 in
B. Mertsching et al. (eds.): KI 2009 - Advances in Artificial Intelligence.
Proceedings of the 32nd Annual Conference on Artificial Intelligence,
LNAI 5803, Springer: Berlin and Heidelberg 2009.
M. Preuss, G. Rudolph, and S. Wessing:
Tuning Optimization Algorithms for Real-World Problems by Means of Surrogate Modeling,
pp. 401-408 in M. Pelikan and J. Branke (Eds.):
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2010),
ACM Press: New York 2010.
J. Quadflieg, M. Preuss, O. Kramer, and G. Rudolph:
Learning the Track and Planning Ahead in a Car Racing Controller, pp. 395-402 in
Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG 2010),
IEEE Press: Piscataway (NJ) 2010.
N. Beume, M. Laumanns, and G. Rudolph:
Convergence Rates of (1+1) Evolutionary Multiobjective Algorithms,
pp. 597-606 in R. Schaefer et al. (Eds.):
Proceedings of the 11th Int'l Conf. on Parallel Problem Solving from Nature (PPSN XI),
Springer: Berlin Heidelberg 2010.
Best student paper award (N. Beume).
S. Wessing, N. Beume, G. Rudolph, and B. Naujoks:
Parameter Tuning Boosts Performance of Variation Operators in Multiobjective Optimization,
pp. 728-737 in R. Schaefer et al. (Eds.):
Proceedings of the 11th Int'l Conf. on Parallel Problem Solving from Nature (PPSN XI),
Springer: Berlin Heidelberg 2010.
N. Beume, M. Laumanns, and G. Rudolph:
Convergence Rates of SMS-EMOA on Continuous Bi-Objective Problem Classes, pp.243-251 in
H.-G. Beyer and W. B. Langdon (Eds.):
Proceedings of the 11th Int'l Conf. on Foundations of Genetic Algorithms (FOGA XI),
ACM Press: New York 2011.
J. Quadflieg, M. Preuss, and G. Rudolph:
Driving Faster Than a Human Player, pp. 143-152 in
C. Di Chio et al. (Eds.):
Proceedings of Int'l Conf. on Applications of Evolutionary Computation (EvoApplications), part 1,
Springer: Berlin Heidelberg 2011.
G. Rudolph:
On Geometrically Fast Convergence to Optimal Dominated Hypervolume of Set-based Multiobjective Evolutionary Algorithms,
pp. 1718-1722 in A. Smith (ed.): Proceedings of 2011 IEEE Congress on Evolutionary Computation (CEC 2011),
IEEE Press: Piscataway (NJ) 2011.
F. Neumann, P. Oliveto, G. Rudolph, and D. Sudholt:
On the Effectiveness of Crossover for Migration in Parallel Evolutionary Algorithms,
pp. 1587-1594 in N. Krasnogor and P.L. Lanzi (eds.):
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2011),
ACM Press: New York 2011.
M. Preuss, G. Rudolph, and I. Vatolkin:
Multi-Objective Feature Selection in Music Genre and Style Recognition Tasks,
pp. 411-418 in N. Krasnogor and P.L. Lanzi (eds.):
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2011),
ACM Press: New York 2011.
M. Preuss, S. Wessing, and G. Rudolph:
When Parameter Tuning Actually is Parameter Control,
pp. 821-828 in N. Krasnogor and P.L. Lanzi (eds.):
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2011),
ACM Press: New York 2011.
O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph:
Exploratory Landscape Analysis,
pp. 829-836 in N. Krasnogor and P.L. Lanzi (eds.):
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2011),
ACM Press: New York 2011. ACM/Sigevo Impact Award 2021
T. Deinert, I. Vatolkin, and G. Rudolph:
Regression-Based Tempo Recognition from Chroma and Energy Accents for Slow Audio Recordings,
pp. 60-68 in K. Brandenburg and M. Sandler (eds.):
Proceedings of AES 42nd Int'l Conf. on Semantic Audio, Audio Engineering Society: New York 2011.
M. Preuss, J. Quadflieg, G. Rudolph:
TORCS Sensor Noise Removal and Multi-objective Track Selection for Driving Style Adaptation,
pp. 337-344 in:
Proceedings of the IEEE 2011 Conference on Computational Intelligence and Games,
IEEE Press 2011. (DOI 10.1109/CIG.2011.6032025)
K. Gerstl, G. Rudolph, O. Schütze, and H. Trautmann:
Finding Evenly Spaced Fronts for Multiobjective Control via Averaging Hausdorff-Measure,
in:
Proceedings of 8th International Conference on Electrical Engineering, Computer Science and Automatic Control (CCE 2011),
IEEE Press 2011. (DOI 10.1109/ICEEE.2011.6106656)
K. Gerstl, G. Rudolph, O. Schütze, and H. Trautmann,
Gleichmäßige Paretofront-Approximationen für mehrkriterielle Kontrollprobleme unter Verwendung des gemittelten Hausdorff-Maßes,
pp. 93-106 in F. Hoffmann and E. Hüllermeier (eds.):
Proceedings of the 21st GMA Workshop on Computational Intelligence, Universitätsverlag Karlsruhe 2011.
(German version of CCE 2011)
V. Mattern, I. Vatolkin, and G. Rudolph:
A Case Study about the Effort to Classify Music Intervals by Chroma and Spectrum Analysis,
pp. 519-528
in: B. Lausen, D. van den Poel, and A. Ultsch (eds.): Algorithms from and for Nature and Life,
(revised selected papers of the 35th GfKl 2011),
Springer: Cham Heidelberg 2013.
H. Trautmann, G. Rudolph, C. Dominguez-Medina, and O. Schütze:
Finding Evenly Spaced Pareto Fronts for Three-Objective Optimization Problems,
pp. 89-105 in O. Schütze et al. (eds.):
EVOLVE - A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation II (Proceedings),
Springer: Berlin Heidelberg 2013.
D. Brockhoff, M. López-Ibáñez, B. Naujoks, and G. Rudolph:
Runtime Analysis of Simple Interactive Evolutionary Biobjective Optimization Algorithms,
pp. 123-132 in C.A. Coello Coello et al. (Eds.):
Proceedings of the 12th Int'l Conf. on Parallel Problem Solving from Nature (PPSN XII), Volume 1,
Springer: Berlin Heidelberg 2012.
G. Rudolph, H. Trautmann, S. Sengupta, and O. Schütze:
Evenly Spaced Pareto Front Approximations for Tricriteria Problems Based on Triangulation,
pp. 443-459 in R.C. Purshouse et al. (eds.):
7th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2013),
LNCS 7811, Springer: Berlin Heidelberg 2013.
G. Rudolph:
Convergence Rates of Evolutionary Algorithms for Quadratic Convex Functions with Rank-Deficient Hessian,
pp. 151-160 in M. Tomassini et al. (eds.):
11th International Conference on Adaptive and Natural Computing Algorithms (ICANNGA 2013),
LNCS 7824, Springer: Berlin Heidelberg 2013.
S. Wessing, M. Preuss, and G. Rudolph:
Niching by Multiobjectivization with Neighbor Information: Trade-offs and Benefits.
pp. 103-110 in
Proceedings of 2013 IEEE Congress on Evolutionary Computation (CEC 2013),
IEEE Press: Piscataway (NJ) 2013.
C. Dominguez-Medina, G. Rudolph, O. Schütze, and H. Trautmann:
Evenly Spaced Pareto Fronts of Quad-objective Problems using PSA Partitioning Technique.
pp. 3190-3197 in
Proceedings of 2013 IEEE Congress on Evolutionary Computation (CEC 2013),
IEEE Press: Piscataway (NJ) 2013.
V. Sosa, O. Schütze, G. Rudolph, and H. Trautmann:
The Directed Search Method for Pareto Front Approximations with Maximum Dominated Hypervolume.
pp. 189-205 in
EVOLVE - A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation IV (Proceedings),
Springer: Berlin Heidelberg 2013.
M. Kuchem, M. Preuss, and G. Rudolph:
Multi-Objective Assessment of Pre-Optimized Build Orders exemplified for StarCraft 2.
pp. 1-8 in
IEEE Conference on Computational Intelligence in Games (CIG 2013),
IEEE Press: Piscataway (NJ) 2013.
G. Rudolph, O. Schütze, C. Grimme, and H. Trautmann:
An Aspiration Set EMOA based on Averaged Hausdorff Distances,
pp. 153-156 in P.M. Pardalos, M.G.C. Resende, C. Vogiatzis, and J.L. Walteros (eds.):
Proceedings of 8th Conference on Learning and Intelligent Optimization (LION 8),
Springer: Berlin Heidelberg 2014.
M. Preuss, P. Voll, A. Bardow, and G. Rudolph:
Looking for Alternatives: Optimization of Energy Supply Systems without Superstructure.
pp. 177-188 in A.I. Esparcia-Alcázar and A.M. Mora (eds.):
Proceedings of the 2014 European Conference on Applications of Evolutionary Algorithms (EvoApps 2014),
Springer: Berlin Heidelberg 2014.
P. Kerschke, M. Preuss, C. Hernández, O. Schütze, J.-Q. Sun, C. Grimme, G. Rudolph, B. Bischl, and H. Trautmann:
Cell Mapping Techniques for Exploratory Landscape Analysis,
pp. 115-131 in A.-A. Tantar et al. (eds.):
Proceedings of EVOLVE - A bridge between Probability, Set Oriented Numerics and Evolutionary Computation V,
Springer: Berlin Heidelberg 2014.
G. Rudolph, O. Schütze, C. Grimme, and H. Trautmann:
A Multiobjective Evolutionary Algorithm Guided by Averaged Hausdorff Distance to Aspiration Sets,
pp. 261-273 in A.-A. Tantar et al. (eds.):
Proceedings of EVOLVE - A bridge between Probability, Set Oriented Numerics and Evolutionary Computation V,
Springer: Berlin Heidelberg 2014.
T. Glasmachers, B. Naujoks, and G. Rudolph:
Start Small, Grow Big? Saving Multi-objective Function Evaluations,
pp. 579-588 in T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith (eds.):
Proceedings of 13th Int'l Conference on Parallel Problem Solving from Nature (PPSN XIII),
Springer: Berlin Heidelberg 2014.
R. Kalkreuth, G. Rudolph and J. Krone:
Automatische Generierung von Bildoperationsketten mittels genetischer Programmierung und CMA-Evolutionsstrategie,
pp. 95-112 in F. Hoffmann and E. Hüllermeier (eds.):
Proceedings of the 24th GMA Workshop on Computational Intelligence, Universitätsverlag Karlsruhe 2014.
V.A. Sosa Hernández, O. Schütze, H. Trautmann, and G. Rudolph:
On the Behavior of Stochastic Local Search within Parameter Dependent MOPs,
pp. 126-140 in A. Gaspar-Cunha et al. (eds.):
Proceedings of 8th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2015), Part II,
LNCS 9019, Springer: Cham Heidelberg 2015.
I. Vatolkin, G. Rudolph, and C. Weihs:
Interpretability of Music Classication as a Criterion for Evolutionary Multi-Objective Feature Selection,
pp. 236-248 in C. Johnson et al. (eds.):
Proceedings of 4th Int'l Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART),
LNCS 9027, Springer: Cham Heidelberg 2015.
C. Grimme, S. Meisel, H. Trautmann, G. Rudolph, and M. Wölck:
Multi-objective Analysis of Approaches to Dynamic Routing of a Vehicle,
accepted for publication in proceedings of
23rd European Conference on Information Systems (ECIS 2015),
26 - 29 May 2015, Münster (Germany).
L. Marti, C. Grimme, P. Kerschke, H. Trautmann, and G. Rudolph:
Averaged Hausdorff Approximations of Pareto Fronts based on Multiobjective Estimation of Distribution Algorithms,
pp. 1427-1428 in
Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO 2015),
ACM Press: New York 2015. (doi 10.1145/2739482.2764631) Extended version available.
J. Bossek, B. Bischl, T. Wagner, and G. Rudolph:
Learning Feature-Parameter Mappings for Parameter Tuning via the Profile Expected Improvement,
pp. 1319-1326 in S. Silva (ed.):
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2015),
ACM Press: New York 2015.
S. Meisel, C. Grimme, J. Bossek, M. Wölck, G. Rudolph, and H. Trautmann:
Evaluation of a Multi-Objective EA on Benchmark Instances for Dynamic Routing of a Vehicle,
pp. 425-432 in S. Silva (ed.):
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2015),
ACM Press: New York 2015.
J. Quadflieg, G. Rudolph, and M. Preuss:
How Costly is a Good Compromise: Multi-Objective TORCS Controller Parameter Optimization,
pp. 454-460 in
IEEE Conference on Computational Intelligence in Games (CIG 2015),
IEEE Press: Piscataway (NJ), 2015.
K. Majchrzak, J. Quadflieg, and G. Rudolph:
Advanced Dynamic Scripting for Fighting Game AI,
pp. 86-99 in K. Chorianopoulos et al. (eds.):
Proceedings of 14th Int'l Conference on Entertainment Computing (ICEC 2015),
Springer International, Cham 2015.
D.A. Menges, S. Wessing, and G. Rudolph:
Asynchrone Parallelisierung des SMS-EMOA zur Parameteroptimierung von mobilen Robotern,
pp. 47-65 in F. Hoffmann and E. Hüllermeier (eds.):
Proceedings of 25th GMA Workshop on Computational Intelligence,
Universitätsverlag Karlsruhe 2015.
R. Kalkreuth, G. Rudolph, and J. Krone:
Improving Convergence in Cartesian Genetic Programming Using Adaptive Crossover, Mutation and Selection,
pp. 1415 - 1422 in
Proceedings of IEEE Symposium Series on Computational Intelligence (SSCI 2015),
IEEE Press: Piscataway (NJ) 2015.
G. Rudolph, O. Schütze, and H. Trautmann:
On the Closest Averaged Hausdorff Archive for a Circularly Convex Pareto Front,
pp. 42-55 in: G. Squillero and P. Burelli (eds.):
Applications of Evolutionary Computation,
Proceedings of 19th European Conference (EvoApps 2016), Part II, LNCS 9598,
Springer 2016.
R. Kalkreuth, G. Rudolph, and J. Krone:
More Efficient Evolution of Small Genetic Programs in Cartesian Genetic Programming by Using Genotypic Age,
pp. 5052--5059 in
Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC 2016),
IEEE Press 2016.
V. Volz, G. Rudolph, and B. Naujoks:
Demonstrating the Feasibility of Automatic Game Balancing,
pp. 269-276 in:
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2016),
ACM Press: New York 2016. Best Paper Award (of Tracks DETA + PES + SBSE)
S. Wessing, G. Rudolph, and D. Menges:
Comparing Asynchronous and Synchronous Parallelization of the SMS-EMOA,
pp. 558-567 in
J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, and B. Paechter (eds.):
Proceedings of 14th Int'l Conf. on Parallel Problem Solving from Nature (PPSN XIV),
Springer 2016.
V. Volz, G. Rudolph, and B. Naujoks:
Surrogate-Assisted Partial Order-based Evolutionary Optimisation,
pp. 639-653 in H. Trautmann et al. (eds.):
Proceedings of 9th Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2017),
Springer 2017.
S. Wessing, R. Pink, K. Brandenbusch, and G. Rudolph:
Toward Step-size Adaptation in Evolutionary Multiobjective Optimization,
pp. 670-684 in H. Trautmann et al. (eds.):
Proceedings of 9th Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2017),
Springer 2017.
R. Kalkreuth, G. Rudolph, and A. Droschinsky:
A New Subgraph Crossover for Cartesian Genetic Programming,
pp. 294–310, in J. McDermott, M.Castelli, L. Sekanina, E. Haasdijk, and P. García-Sánchez, P. (eds.):
Proceedings of 20th European Conference on Genetic Programming (EuroGP 2017),
Springer 2017.
F. Ostermann, I. Vatolkin, and G. Rudolph:
Evaluation Rules for Evolutionary Generation of Drum Patterns in Jazz Solos,
pp. 246-261 in J. Correia, V. Ciesielski, and A. Liapis (eds.):
Proceedings of 6th International Conference on Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2017),
Springer 2017.
F. Scholz, I. Vatolkin, and G. Rudolph:
Singing Voice Detection across Different Music Genres,
Paper 2.1 in Ch. Dittmar and J. Abeßer:
Proceedings of the Conference on Semantic Audio (AES 2017),
Audio Engineering Society: New York 2017.
(ISBN 978-1-942220-15-2)
V. Volz, G. Rudolph, and B. Naujoks:
Investigating Uncertainty Propagation in Surrogate-Assisted Evolutionary Algorithms,
pp. 881-888 in:
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2017),
ACM Press: New York 2017.
J. Bossek, C. Grimme, S. Meisel, G. Rudolph, and H. Trautmann:
Local Search Effects in Bi-Objective Orienteering,
pp. 585-592 in:
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2018),
ACM Press: New York 2018.
M. Bommert and G. Rudolph:
Reliable Biobjective Solution of Stochastic Problems Using Metamodels,
pp. 581-592 in
Deb, K. et al. (eds.):
Proceedings of 10th Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2019),
Springer 2019.
J. Bossek, C. Grimme, S. Meisel, G. Rudolph, and H. Trautmann:
Bi-Objective Orienteering: Towards a Dynamic Multi-Objective Evolutionary Algorithm,
pp. 516-528 in
Deb, K. et al. (eds.):
Proceedings of 10th Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2019),
Springer 2019.
J. Kuzmic, G. Rudolph, W. Roth, and M. Rübsam:
IoT Based Driver Information System for Monitoring the Load Securing,
pp. 262-269 in:
Proceedings of 4th Int'l Conf. on Internet of Things, Big Data and Security (IoTBDS 2019), Volume 1,
SciTePress 2019. (doi: 10.5220/0007710302620269) Best Poster Award
Ziqing Cheng, Qi Wang, Zhiyong Li, and G. Rudolph:
Computation Offloading and Resource Allocation for Mobile Edge Computing,
pp. 2735-2740 in:
Proceedings of IEEE Symposium Series on Computational Intelligence (SSCI 2019), 2019.
(doi: 10.1109/SSCI44817.2019.9003106)
Chen Du, Yifan Chen, Zhiyong Li, and G. Rudolph:
Joint Optimization of Offloading and Communication Resources in Mobile Edge Computing,
pp. 2729-2734 in:
Proceedings of IEEE Symposium Series on Computational Intelligence (SSCI 2019), 2019.
(doi: 10.1109/SSCI44817.2019.9003099)
F. Heerde, I. Vatolkin, and G. Rudolph:
Comparing Fuzzy Rule Based Approaches for Music Genre Classification,
pp. 35-48 in J. Romero et al. (eds.):
Proceedings of 9th International Conference on Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2020),
Springer International Publishing: Cham 2020.
J. Kuzmic and G. Rudolph:
Unity 3D Simulator of Autonomous Motorway Traffic applied to Emergency Corridor Building,
pp. 197-204, in: G. Wills, P. Kacsuk, and V. Chang (eds.):
Proceedings of 5th Int'l Conf. on Internet of Things, Big Data and Security (IoTBDS 2020), 2020.
(doi:10.5220/0009349601970204)
J. Bossek, C. Grimme, G. Rudolph, and H. Trautmann:
Towards Decision Support in Dynamic Bi-Objective Vehicle Routing,
in: Proceedings of 2020 IEEE Congress on Evolutionary Computation (CEC 2020), IEEE Press, 2020.
(doi: 10.1109/CEC48606.2020.9185778)
P. Ginsel, I. Vatolkin, and G. Rudolph:
Analysis of Structural Complexity Features for Music Genre Recognition,
in: Proceedings of 2020 IEEE Congress on Evolutionary Computation (CEC 2020), IEEE Press, 2020.
(doi: 10.1109/CEC48606.2020.9185540)
M. Hamdan, G. Rudolph, and N. Hochstrate:
A Parallel Evolutionary System for Multi-objective Optimisation,
in: Proceedings of 2020 IEEE Congress on Evolutionary Computation (CEC 2020), IEEE Press, 2020.
(doi: 10.1109/CEC48606.2020.9185855)
M. Bommert and G. Rudolph:
Reliable Solution of Multidimensional Stochastic Problems Using Metamodels,
pp. 215-226 in G. Nicosia et al. (eds.): Proceedings of
6th Int'l Conf. on Machine Learning, Optimization, and Data Science (LOD 2020),
Springer International: Cham 2020. (doi: 10.1007/978-3-030-64583-0_20)
M. Bommert and G. Rudolph:
Kernel Density Estimation for Reliable Biobjective Solution of Stochastic Problems,
pp. 53-64 in H. Ishibuchi et al. (eds.):
Proceedings of 11th Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2021),
Springer 2021.
J. Kuzmic and G. Rudolph:
Comparison between Filtered Canny Edge Detector and Convolutional Neural Network for Real Time Lane Detection in a Unity 3D Simulator,
pp. 148-155, in:
Proceedings of 6th Int'l Conf. on Internet of Things, Big Data and Security (IoTBDS 2021), Volume 1,
SciTePress 2021. (doi: 10.5220/0010383701480155)
I. Vatolkin, P. Ginsel, and G. Rudolph:
Advancements in the Music Information Retrieval Framework AMUSE over the Last Decade,
pp. 2383–2389 in:
Proceedings of 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2021), 2021.
(doi: 10.1145/3404835.3463252)
J. Kuzmic and G. Rudolph:
Object Detection with TensorFlow on Hardware with Limited Resources for Low-Power IoT Devices,
pp. 302-309, in: Proceedings of
13th International Conference on Neural Computation Theory and Applications (NCTA 2021), 2021.
(doi: 10.5220/0010653500003063)
J. Kuzmic, P. Brinkmann, and G. Rudolph:
Real-Time Object Detection with Intel NCS2 on Hardware with Limited Resources for Low-power IoT Devices,
pp. 110-118 in D.Bastieri et al. (eds.):
Proceedings of 7th Int'l Conf. on Internet of Things, Big Data and Security (IoTBDS 2022),
SCITEPRESS, 2022.
(doi: 10.5220/0010979900003194)
J. Kuzmic and G. Rudolph:
Real-time Distance Measurement in a 2D Image on Hardware with Limited Resources for Low-power IoT Devices (Radar Control System),
pp. 94-101 in Ana L. N. Fred et al. (eds.): Proceedings of
3rd International Conference on Deep Learning Theory and Applications (DeLTA 2022), SCITEPRESS 2022.
F. Ostermann, I. Vatolkin, and G. Rudolph:
Artificial Music Producer: Filtering Music Compositions by Artificial Taste,
in Proceedings of the 3rd Conference on AI Music Creativity (AIMC), 2022.
(doi: 10.5281/zenodo.7088395)
G.Rudolph:
Runtime Analysis of (1+1)-EA on a Biobjective Test Function in Unbounded Integer Search Space,
pp. 1380-1385 in:
Proceedings of 2023 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE Press, 2023.
(doi: 10.1109/SSCI52147.2023.10371816)
J. Kuzmic, F. Ostermann, and G. Rudolph:
Emergency Corridor Building on Multi-Lane Motorways with Autonomous Model Cars,
pp. 321-328 in
Proceedings of the 9th Int'l Conf. on Internet of Things, Big Data and Security (IoTBDS 2024), SCITEPRESS, 2024.
(doi: 10.5220/0012731700003705)
G. Rudolph and M. Wagner:
Towards Adaptation in Multiobjective Evolutionary Algorithms for Integer Problems,
pp. 1-8 in 2024 IEEE Congress on Evolutionary Computation (CEC), IEEE Press, 2024.
(doi: 10.1109/CEC60901.2024.10612114)
F. Neumann and G. Rudolph:
Archive-based Single-Objective Evolutionary Algorithms for Submodular Optimization,
pp. 166–180 in M. Affenzeller et al. (eds.):
18th International Conference on Parallel Problem Solving from Nature (PPSN 2024),
Springer: Cham 2024. (doi: 10.1007/978-3-031-70071-2_11)
B. Doerr, M.S. Krejca, and G. Rudolph:
Runtime Analysis for Multi-Objective Evolutionary Algorithms in Unbounded Integer Spaces,
accepted for presentation at
39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025),
Philadelphia (USA), 27 February - 2 March 2025.
G. Rudolph and M. Wagner:
Cumulative Step Size Adaptation for Adaptive SEMO in Integer Space,
accepted for presentation at
13th Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2025),
Canberra (Australia), 4-7 March 2025.
B. Künne, G. Rudolph, B. Naujoks, T. Richard, B. Schultebraucks:
A multiobjective evolutionary algorithm for designing and optimizing gearshafts.
pp. 267-268 in P. Scharff (ed.): 53. Internationales Wissenschaftliches Kolloquium (IWK) der TU Ilmenau
(Proceedings CD-Rom), ISLE, TU Ilmenau 2008 (ISBN 978-3-938843-40-6).
G. Rudolph:
The Virtues of Metaheuristics in Stochastic Programming,
pp. 55-57 in A. Borkowski and M. Nagl (eds.): Abstracts of the 1st Polish-German Workshop on Research Co-operation in Computer Science.
Polish Academy of Science, Warsaw 2009 (ISBN 978-83-924901-7-3).
G. Rudolph, M. Preuss, and J. Quadflieg:
Double-layered Surrogate Modeling for Tuning Metaheuristics,
presented at ENBIS/EMSE Conference "Design and Analysis of Computer Experiments",
Saint-Etienne (France), July 1-3, 2009.
Available as Technical Report.
P. Spronck, G. Yannakakis, C. Bauckhage, E. André, D. Loiacono, and G. Rudolph: Player Modeling,
pp. 59-61 in S.M. Lucas et al. (eds:): Artificial and Computational Intelligence in Games,
Dagstuhl Reports 2(5):43–70, 2012.
H. Ishibuchi, K. Klamroth, S. Mostaghim, B. Naujoks, S. Poles, R. Purshouse, G. Rudolph, S. Ruzika, S. Sayìn, M.M. Wiecek, and X. Yao:
Multiobjective Optimization for Interwoven Systems, pp. 139-151 in Dagstuhl Reports, Volume 5, Issue 1, 2015.