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Abstract

This paper adresses the problem of diversity in multiobjective evolutionary al-
gorithms and its implications for the quality of the approximated set of efficient
solutions (Pareto set). Current approaches for maintaining diversity are classi-
fied and related to the overall fitness assignment strategy. The resulting groups of
complex selection operators are presented and tested on different objective func-
tions exhibiting different levels of difficulty. For the assessment of the algorithmic
performance a quality measure based on the notion of dominance is applied that
reflects gain of information produced by the algorithm. This allows an on-line
and time-dependent evaluation in order to characterize the dynamic behavior of an
algorithm.

1 Introduction

Evolutionary algorithms (EA) have been applied to optimization problems with mul-
tiple criteria since the 1980s. Schaffer’s VEGA [Schaffer, 1985] has been the first
algorithm that was able to cope with different objectives simultaneously without scalar-
ization by aggregation and solving a single objective surrogate problem instead. Since
then many different approaches and algorithms have been proposed and tested both on
mathematical test problems and on real world applications. The concept of populations
of distinct individuals motivates the use of EA for finding a set of compromize solutions
for a multi-objective problem. Some algorithms let different criteria dictate the selec-
tion or deletion or different parts of the population while others make use of Pareto’s
[Pareto, 1972] notion of dominance to compare invidiual solutions. An extensive sur-
vey can be found in [Fonseca and Fleming, 1995] and [Fonseca and Fleming, 1997].

Though the choice of a specific algorithm may depend on the preferences of the
decision maker as well as on technical preconditions (such as availability of software,
representational issues or applicability on parallel machines), there will still be a variety
of alternatives left to choose from. These can be used “as is” or “recombined” and
refined further to create new algorithms. In order to compare different algorithms – or
rather methods – performance criteria need to be defined.

In most cases selection is the operator that receives the lion’s share of the re-
searchers’ interest. This is certainly due to the fact that selection must somehow re-
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veal a preference relation on the set of individuals and that the case of multiple criteria
usually implies the existence of non-comparable individuals.

Another major issue is the expected outcome of the algorithm. In contrast to the
single objective case, where usually the global optimum has to be found, we now face
a set of efficient or Pareto-optimal solutions. This raises the question of convergence
as well as of the distribution of solutions. If we consider the Pareto set as the “solu-
tion” of a multi-objective optimization problem we want an appropriate algorithm to
approximate it as good as possible. Hence, preservation of the individuals’ diversity is
crucial, not only to avoid premature convergence, but also not to loose any potentially
efficient solution.

This study tries to classify different selection schemes together with different meth-
ods to maintain diversity. For each class a representative algorithm is implemented and
tested on highdimensional mathematical test problems according to a performance cri-
terion based on the size of the objective space that an algorithm identifies as being
dominated. Here, the main focus will be on the development of the trade-off surface
over time.

2 Concepts and approaches

2.1 Basic definitions

Let f � X � IRq with X � IR� and q � � be a vector-valued function that maps a
decision vector x � X to an objective vector y � f�x� � IRq. In the ideal case the
objective functions fi � X � IR should be minimized simultaneously for i � �� � � � � q.
The problem is, however, that the set of objective vectors is not totally ordered. Let
F � ff�x� � x � X � IR�g � IRq be the set of objective vectors that are attainable
under the mapping f . An objective vector y� � F is said to dominate another objective
vector y �� y�, written y� � y, if y�i 	 yi for all i � �� � � � � q. If � 
y � F with y � y�,
then y� in called Pareto-optimal with respect to f . The set F � of all Pareto-optimal
objective vectors is called the Pareto set. Each decision vector x� � X� � fx � X �
IR� � f�x� � F�g is termed an efficient solution or a Pareto-optimal decision vector of
the multi-objective optimization problem. Since the sets X � and F� can be analytically
determined only in exceptional cases and since the dimension of X � as well as F� may
be as large as minf�� q � �g, numerical methods for finding the set of Pareto-optimal
decisions are generally restricted to approximating the shape of the set X �.

2.2 Performance criteria

In most cases collecting information about the trade-offs between objectives prior to
decision making is very important, or even necessary, for solving optimization prob-
lems with multiple objectives. Ideally the algorithm should find the set of all nondom-
inated solutions, which will constitute the global trade-off (hyper)surface. But since
resources are finite, all algorithms are restricted to approximate the Pareto set by a
number of representative solutions. Yet even these samples give us very limited insight
into the real trade-off surface, because we cannot assume anything about the location
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of Pareto-optimal points in between two currently nondominated points. Of course in-
terpolation is prohibited, though we should be aware that this is done automatically by
a human eye confronted with an algorithmic sample.
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B

Figure 1: Dominated, dominating and incomparable points in objective space

The knowledge of a single vector in objective space F just gives us information
about which objective vectors are dominated by f (darker grey), which vectors would
dominate f (A) and which vectors would be incomparable to f (B, see figure 1). As we
do not know from this sample, if there are any vectors in F � f�X � that belong to the
latter two groups, the only piece of information that really helps is the one mentioned
first.

Let D�y� � fy� � F � y � y�g be the set of objective vectors that are dominated
by an individual y (dominated set). Then we refer to the union of all dominated sets of
the individuals within a populationP as the global dominated set:

Dg �
�
y�P

D�y� (1)

Thus gain of information can be measured by the size of the global dominated set.
Measuring the size of the global dominated set as a performance criterion was first
proposed by [Zitzler and Thiele, 1998].

Fonseca and Fleming introduced a related concept called “attainment surface” which
can be regarded as the “family of tightest goal vectors” known to be attainable given
the algorithmically produced data [Fonseca and Fleming, 1996]. This surface consti-
tutes the boundary of the global dominated set in objective space. In order to produce
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statistically sound results the authors recommend a superposition of attainment sur-
faces of different runs and to produce unidimensional samples by intersecting these
with straight lines running diagonally to the axes.

Another study that focuses on the distribution of the samples on the Pareto set
is given by Srinivas and Deb [Srinivas and Deb, 1994]. These authors measure the
distribution by means of the ��-statistics. Naturally, this is only possible when the
location of the Pareto set is known in advance.

Here, we presume only the single objective optima as being known.1 and define the
vector of there values as y� � �y�� � y

�
� � � � � � y

�
m�T and the m Pareto-optimal objective

vectors with y�i as the i-th component as y�i. Needless to say y� will usually not be
attainable, and y�i constitute the outer points of the Pareto set. Starting from this and
adding the information we get from every search point we define gain of information
as the size of the intersection of the hypercube H � fy � IRq � y � y� �

Pm

i�� ai �
�y�i � y��� ai � �	� �
g and the global dominated set Dg , normalized by the size of H:

I ��
��H 
Dg�

��H�
(2)

where ��A� denotes the Lebesgue measure of the bounded set A. This will serve
as the measure of performance in the following.

2.3 Selection modes

Fonseca and Fleming classified multi-objective EAs according to the underlying fitness
assignment concept. They differentiate aggregational, population-based and Pareto-
based approaches. Since aggregation of the different objectives into a scalar surrogate
function implies a search for a distinct optimal point rather than for the whole set
of efficient points, only the latter two classes will be considered in this study. The
conceptional difference is whether or not the notion of dominance is considered when
assigning (scalar) fitness values and comparing individuals.

Population-based approaches consider all objectives as different selection criteria
of the environment that will affect the population either simultaneously or iteratively.
This can be implemented as filling different parts of the next generation or the mating
pool by individuals according to the different components of their respective objective
function values (like in VEGA) or by deleting fractions of the next generation accord-
ing to different criteria (like in [Kursawe, 1990] or [Laumanns et al., 1998]).

Pareto-based approaches can further be divided into those which classify the whole
population at once by applying a specific fitness assignment strategy based on the no-
tion of either dominance level or dominance grade and in those which don’t. The
dominance grade of an individual simply is a function of the number of individuals
that dominate it and is applied by the strategies of [Fonseca and Fleming, 1993]. On
the other hand, if one successively removes the subsets of non-dominated individuals
from the populations, the stage at which an individual becomes non-dominated con-
stitutes the dominance level it belongs to. This method was proposed by Goldberg

1At last one could run a preliminary single objective EA on every component of the objective function.
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[Goldberg, 1989]. As an example for the latter class, tournament selection can be ap-
plied without global fitness assignment. In that case, like in the Pareto GA proposed by
[J. Horn and Goldberg, 1994], individuals are compared mutually using the dominance
relation.

2.4 Diversity

In single-objective optimization preservation of diversity during the course of evolution
is necessary to prevent premature convergence. Methods range from modifications of
the selection operator in panmictic populations, such as niching by fitness sharing or
crowding, to structuring populations with local interactions of individuals in order to
receive genetic diversity by isolation-by-distance.

In the multi-objective case the issue of diversity is raised by another dimension.
Diverse single solutions need to be maintained until the algorithm terminates to get a
good approximation of the Pareto set. Current approaches to preserve diversity during
the evolution are based on methods developed for the single-objective case. Another
concept to keep track of the whole Pareto set is to store all non-dominated points in an
continuously updated archive. These stored representatives may or may not take part
in the further evolution. Clustering algorithms can further be applied to reduce the size
of the set of non-dominated solutions.

In this study it will be investigated how the most common methods for maintaining
diversity behave when they are applied to a multi-objective problem and how they are
influenced by the underlying selection mode.

3 Perfomance assessment

Previous studies on the performance of multi-objective EAs always considered the final
output or the results of an algorithm. This implies defining an appropriate termination
criterion that should take different convergence velocities into account. Furthermore
there is no insight into the way these results are produced and whether an algorithm
could have been stopped earlier with nearly no loss of quality or should have run for
longer.

In this study the on-line performance of different approaches will be examined,
i. e., the evolution of (non-dominated) search points over time. Thereby it should be
possible to characterize the behavior of different approaches in a more detailed manner.
In addition there will be no archive of non-dominated solutions, because an algorithm’s
ability to maintain them itself is one major issue of interest. This may be justified
though some algorithms really depend on storing all non-dominated points externally,
i. e., not as members of the current population. However, an archive can easily be
supplied to any algorithm.

3.1 Choice of representative algorithms

The test candidates for this comparative evaluation should rather reflect the principles
of a method than algorithmic details. To guarantee a fair comparison and an isolated
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evaluation of the fitness assignment and selection principles, the algorithms differ only
in this respect. Representation of solutions, mutation, and recombination will remain
identical.

For our purpose methods are classified along two dimensions (see table 1). The first
one is the familiar distinction between Pareto-based and non-Pareto population-based
selection, while the second refers to the manner diversity is enhanced or to the nich-
ing principle. Here, we restrict ourselves to the most frequently used fitness sharing
concept for panmictic populations in contrast to geographical EAs with structured pop-
ulations, which have been extended to multi-objective problems during the last three
years. In the following the choice of appropriate algorithms to represent each class is
motivated and described.

Population — Selection Pareto non-Pareto

panmictic PP PN
structured SP SN

Table 1: Two-dimensional classification of selection methods

3.1.1 Pareto-based selection with fitness sharing

The representative for Pareto-based selection with fitness sharing is derived from the
MOGA presented in [Fonseca and Fleming, 1993]. Fitness is assigned using the domi-
nance grade plus the sharing function value, in which a normalized fitness of � is shared
in objective space. This guarantees that after sharing the fitness an individual of grade
n is always better than the fitness of a grade n� � individual which implies that in the
case of dominance the dominating individual’s fitness will always be better than the
dominated one’s. The final fitness values are then used to perform truncation selection.

3.1.2 Population-based non-Pareto selection in panmictic populations

This class will be represented by a simplified version of Kursawe’s variant of Evolu-
tion Strategies for vector optimization [Kursawe, 1990]. Here, truncation selection is
applied in several steps. Each step consists of ranking the population according to a
(randomly chosen) objective, and removing the worst individuals from the population
until the final size of the mating pool for creating the next generation is reached.

3.1.3 Pareto-based selection in a structured population

Poloni [Poloni, 1995] has been the first one to use structured populations for multi-
objective problems to maintain diversity in a more natural way. In his approach he
applied local tournament selection to a population where individuals are placed on a

6



two-dimensional torus. Specifically, each individualproduces its offspring by recombi-
nation with the best individual from a given neighborhood according to the dominance
relation. If multiple non-dominated individuals exists, one is chosen at random.

3.1.4 Non-Pareto selection in a structured population

Another approach using a spatially distributed population is the predator-prey-model
proposed in [Laumanns et al., 1998]. Here, selection is performed locally by preda-
tor individuals, which move across the population according to a random walk. Each
predator corresponds to one of the objectives and deletes the individual from its neigh-
borhood which fulfills this criterion worst. Empty spaces are then refilled by recombi-
nation of adjacent individuals.

3.2 Choice of test problems

Though the choice of test problems is always arbitrary we tried again to cover certain
groups by specific functions. In contrast to the case study reported in [?], where dis-
crete constrained optimization problems have been examined, we focus on continuous,
real valued, and unconstrained problems. Since the influence of the convexity of the
trade-off surface on the optimizer has been subject to many discussions, we included
problems with convex (F1) and concave (F2 [Quagliarella and Vicini, 1997]) trade-off
surfaces. A more sophisticated problem (F3 [Kursawe, 1990]) even exhibits convex
and concave parts in the trade-off surface as well as an isolated efficient point. In detail
the test functions are defined as follows, for all compenents minimization is assumed:

F��x� �

�
�x��

�x � c��

�
� c � ��� 	� 	� � � � � 	�T (3)

F��x� �

�
� �
n

Pn

i���x
�
i � �	 cos���xi� � �	��

�
�

� �
n

Pn

i����xi � ����� � �	 cos����xi � ����� � �	��
�
�

�
(4)

F��x� �

� Pn��

i�� ���	e����
p
x�
i
�x�

i�� �Pn

i���jxij��� � sin�xi�
��

�
(5)

3.3 Representation and parameter setting

Since all test problems are functions of �	 variables each individual is represented by
a vector of �	 floating point numbers. Mutation is carried out by adding a normal-
distributed random number to each of the decision variables with zero mean and stan-
dard deviation � � 	�	�, which remains fixed during the evolution. Offspring are
produced by recombining two of the possible parent individuals in each turn using
discrete recombination on the decision variables.

The total population size p should be identical for all algorithms. In the case of the
structured population a two-dimentional torus is used with

p
p �pp individuals. For
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the non-structured populations truncation selection will lead to a number of 	 � �

�
p

possible parents for the next generation. In the predator-prey model pred individu-
als will be replaced in each iteration, which corresponds to the number of predators
and should therefore be a multiple of m to assure equal importance to each objec-
tive. For the tournament selection in SP all individuals found during a s-step random
walk starting from the first (fixed) parent’s position will be considered, while in this
case s � �

�

p
p is chosen. Finally the niche radius for PP will be calculated for each

generation using the formula proposed in [Fonseca and Fleming, 1993].

4 Test results

For all test runs the individuals have been initialized using the uniform distribution on
������� ����
��. The runs have been terminated after �	�� 
		 function evaluations in
the case of p � �	�
 and �	� 			 evaluations in the case of p � �		. Figure 2 displays
the results for the measure I as the average values of �	 independent runs for each
function and model.

Figure 3 shows the final populations for all models in the case of F�.

4.1 Discussion

The first obvious observation that can be conducted from the plots in figure 2 is the
fast gain of information of the Pareto-based selection in the panmictic population (PP)
in all three test problems. In the beginning PN shows similar behavior, but begins to
stagnate very early to be overtaken by the structured populations in each case. This is
certainly due to the loss of diversity as soon as the vicinity of the trade-off surface is
reached.

The structured populations both reveal slower gain of information, and are able
to reach approximately 90 per cent of PP’s maximal value at last. Surprizingly, the
final state of non-Pareto selection seems to be slightly better than the (local) Pareto-
based selection in general. While on F1 and F2 PPs’s performance is monotonously
increasing, it reaches its peak on F3 at about 20,000 function evaluations and gradually
falls to 70 per cent of its maximum afterwards. On the concave problem F3 only
PPs it able to maintain its maximal value, while PP without sharing again loses its
performance. In these cases the structured populations maintain diversity for longer
and manage to overtake PP on F2 as well as both PP and PPs on F3.

On F1 no significant differences can be observed betweenn PP and PPs. On F2
PPs performs slightly better after the maximum is reached, but on F3 fitness sharing
seems to be crucial not to lose performance. This leads us to the assumption that only
on concave problems, where it is very difficult to get into the “corners” of the trade-off
surface, niching by sharing is of importance. In the other cases the fitness assignment
strategy based on the dominance grade turns out to be sufficient to guide the search
from densely populated areas to those represented by only few individuals.

The test runs with p � �		 show that the differences between structured and non-
sturctured population models diminish for small population sizes. This is certainly due
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to the fact that isolation-by-distance does not work properly for a small diameter of the
underlying spatial structure.

All in all those models using structured populations generally evolve slower con-
cerning the quality measure applied in this study and, especially the predator-prey se-
lection method, need large population sizes. However, spatially distributed models
are usually better suited for parallel computation which could in turn lead to a further
improvement with respect to the computation time used in contrast to the panmictic
models.

5 Conclusions

The application of a dynamic performance measure provides insight into the behav-
ior of different selection schemes in multi-objective evolutionary algorithms. It has
been shown empirically that Pareto-based selection usually exhibits fast convergence
towards the vicinity of the Pareto set, and that a fitness assignment strategy based on
the dominance grade leads to a good distribution of individuals on convex functions.
On more difficult functions, however, further enhancement of the selection operator
is necessary to maintain diversity, which can partially be achieved by fitness sharing.
Spatially distributed populations are able to maintain diversity for a longer timespan,
but generally evolve slower than their panmictic counterparts.

These investigations may motivate the analysis of the underlying principles of the
different fitness assignment and selection methods. This could, in return, lead to the
constuction of advanced operators that provide both convergence velocity and main-
tainence of diversity.

Further research should include the influence of mutation and recombination in the
case of multiple objectives. Especially adaptive operators, like the self-adaptation of
mutation rates, should be of interest.
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Figure 2: Development of the measure I during the evolution, displayed on the number
of function evaluations, in the case of p � �	�
 (left) and p � �		 (right). The first
row shows F1, the second F2, and the last F3. The marker � corresponds to PPs, � to
PP, � to PN, � to SP, and � to SN. 12
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Figure 3: Population after �		� 			 function evaluations of F3 using PP (top left), PN
(top right), SP (bottom left) and SN (bottom right)
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