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1 Introduction

Multi-membered evolution strategies, as introduced by Schwefel [1], are known to be ro-
bust optimum seeking procedures for a variety of parameter optimization problems. On
account of their inherent parallelism multi-membered evolution strategies can be imple-
mented easily on parallel computers. However, while there have been several studies on
parallel versions of genetic algorithms [2][3], only little work has been done on parallel
versions of evolution strategies.

The approach taken here to parallelize the evolution strategy can be considered as a
coarse grained one: A large population is divided into several subpopulations - each of
them ’living’ on a different transputer. After one or more generations some individuals
migrate to a neighboring subpopulation, or in other words: the distributed optimization
processes exchange information during the search.

One field of application might be the search for a global optimum in high dimensional
parameter spaces with nonlinear objectives - a problem which is unsolvable in general
[4]. Even if the search space and the accuracy are bounded the general problem remains
NP-hard. While those problems can be solved by means of complete enumeration in low
dimensions this strategy must fail in high dimension due to the exponential increase of
the necessary effort.

An analoguous argumentation about the solvability can be drawn to the general class
of combinatorial problems: among them you can find the well-known Travelling Salesman
Problem (TSP) which has been included into the testbed. To make the evolution strategy
running on this kind of problems one has to map a feasible solution of the TSP to a
so-called ’object variable vector’ of the evolution strategy and vice versa. This will be
explained in the next sections in more detail.



2 Distributed Evolution Strategies

Two new parameters have been added to the traditional evolution strategy. The parameter
migration period (MP) represents the number of generations wherein no migration takes
place. The number of the migrants is controlled by the parameter migrants (Mig).

In addition to various parameter settings of these two parameters the recombination
parameter of the traditional strategy has been varied, too. Using intermediate recombi-
nation (I) means, that the genotype/phenotype vector of the offspring is generated by
evaluating the mean vector of the parents’ vectors. Discrete recombination (D) can be
regarded as a dynamic n-point crossover: the genome of the offspring is produced by
choosing either the vector component of the first or the second parent with the same
probability.

3 Continuous Problems

3.1 Convergence Speed

In order to determine the convergence speed of the distributed evolution strategy each
variant at first was tested on a unimodal (strict convex) problem:

f@):;w? : (1)

The starting point for each subpopulation was set at random to z; ~ £10°° to obtain a
large obversation period. From the data (fig. 1) we can assume that every variant has a
geometric resp. linear-R convergence for the unimodal problem.

Definition :

Let (ex) be a nonnegative sequence with ¢, — 0 for k& — oo. If there is an index ko, a
number C' > 0 and a number r € [0, 1), so that

e <Ot Yk >k (2)
then the sequence (gi) is said to be geometrically convergent or linear-R convergent. O
From the data we can derive
H07HA0 < oy i [y — 27| < 107 Bk
Hence, with ' = 10°° and ky = 1 we get
28 o7

0.8964 ~ 10780 < p < 107380 ~ 0.9252

which fulfills (2). That means that the convergence speed does not suffer from migration
obviously.
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Figure 1: Best overall convergence for problem 1

3.2 Reliability

The reliability was tested for a generalized form of Rastrigin’s problem [4] which can be
considered as a perturbed version of problem (1):

30
Fla) =3 {e? 450 [1 — cos(2m )]} . (3)
i=1
The starting points were chosen at random in S = {z € R*° : |2;] < 1000}, so that the
function has 2001%° local minima in S. However, if the population is far from the global
minimum the perturbations are dominated by the quadratic term. The closer the strategy
approaches the global minimum the stronger the effects of the perturbations.

From figure 2 one can see that only those variants with discrete recombination and
migration could find the global minimum: all intermediate variants and even the discrete
variant without migration failed. But this might be explained by the symmetric arrange-
ment of the local minima: Suppose, a subpopulation has converged to a local minimum

(n=5)

(0, 1, 0, 1, 1)’
and another to the local minimum

(1, 0, 0, 1, 0)°

By means of migration individuals from the subpopulations meet each other and mak-
ing use of discrete recombination they perhaps produce an offspring with the following
genome:



o
o
-
el - - -
.
=
N ©
‘NT’ Probl/emZ )
= | o=MP: O/ Mig:0 /1
S "= MP:. 0/ Mig 0/D
20en o=MP: 1/ Mig1/1
R e=MP: 1/ Mig:5 /1
! a=MP: 1/ Mig:1/D
4 v=MP: 1/ Mig5/D
© | o=MP:10 / Mig 1/ 1
| x = MP:10 / Mig: 5 / 1
il = =MP:10 / Mig:1 /D
| w=MP: 10 / Mig: 5/ D
|
S
T \ \ \ \ ¥
0 50 100 150 200 250 300

Generation

Figure 2: Best overall convergence for problem 2

(0, 0, 0, 1, 0)’

This offspring is much closer to the optimum than its parents and after some migrations in
subsequent generations the global optimum can be found. If this is the right explanation,
this effect will occur whenever the local optima are arranged regularly related to each
vector component - regardless of the scaling.

On the other hand, if an offspring is produced by intermediate recombination the
genome looks like

(0.5, 0.5, 0, 1, 0.5)’

Such offsprings are always worse than their parents so that the effects of migration will
be eliminated by selection with high probabilty.

4 Combinatorial Problems

4.1 Genotype/Phenotype-Mapping

The genotype of an individual is represented by an object variable vector x with contiuous
components and the strategy variable vector g. To get the phenotype resp. a feasible
solution of the TSP the components of the object variable vector = are sorted, so that
the corresponding sorted indices of the vector represent a feasible tour. The sorting was
done by a variant of heapsort [5].



4.2 First results

The distributed algorithm with the above mapping was tested for a 100 cities problem.
The best tour known so far has the length 21285. The best tour found by the distributed
evolution strategy within 500 generations has the length 21381 and can be seen in fig.
3. Surely, it is not likely that an evolution strategy using this simple mapping will find
the global minimum, but there might be some possibilities to invent a more sophisticated
mapping. However, for a 30 cities problem the best known tour was found within 50
generations.

2000 T T T T % T T
1 "best_tour" ——
1800 - § ) ¢ i ¢ 3 R R
& 5 >
& | N $
1600 > x H
4 . $
4 pS
1400 N " B
&
1200 @ b
N & 4
1000 [ B % - é B
had At Y
&¥ |
800 © & & B
600 ? ¢ é 4
4
400 % 4
b 4 ¢
4 Nl
200 L b
% b & =
0 <@ 1 1 ” 1 1 1 1 1 d
0 500 1000 1500 2000 2500 3000 3500 4000

Figure 3: Best tour for the 100 cities problem
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