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Abstract  The term takeover time regarding selection methods used in evolution-
ary algorithms denotes the (expected) number of iterations of the selec-
tion method until the entire population consists of copies of the best in-
dividual, provided that the initial population consists of a single copy of
the best individual whereas the remaining individuals are worse. Here,
this notion is extended to parallel subpopulations that exchange individ-
uals according to some migration paths modelled by a directed graph.
We develop upper bounds for migrations on uni- and bidirectial rings as
well as arbitrary connected graphs where each vertex is reachable from
every other vertex.
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1. Introduction

The term takeover time regarding selection methods used in evolution-
ary algorithms (EAs) was introduced by Goldberg and Deb [7]. Suppose
that a finite population of size n consists of a single best individual and
n — 1 worse individuals. The takeover time of some selection method
is the (expected) number of iterations of the selection method until the
entire population consists of copies of the best individual.

The calculations in [7] for spatially unstructured (i.e., panmictic) pop-
ulations implictly assume that at least one copy of the best individual is
kept in the population although some selection method may erase all best
copies by chance. If a selection method is elitist, i.e., the best individual
survives selection with probability 1, this kind of extinction is precluded.
At a first glance it is surprising that most results on the takeover time
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are approximations (without bounds) [7] or obtained numerically by an
underlying Markov chain model [2, 11].

Apparently, selection in panmictic populations is the most difficult
case for deriving rigorous results on the takeover time. If only a sin-
gle individual is generated in each generation (steady-state EA) the
Markov model looses some of its complexity as has been shown by Smith
and Vavak [11]. Mathematically rigorous results have been provided by
Rudolph [9, 10] for some of these non-generational selection methods. In
case of populations with a spatial structure (at the level of individuals)
the notion of the takeover time must be extended appropriately. This
has been done by Rudolph [8] who developed bounds on the takeover
time for arbitrary connected population structures and even an exact
expression for a structure like a ring. These results have been extended
by Giacobini et al. [4, 5, 6].

Recently, Alba and Luque [1] have considered spatially structured
populations that are structured at the level of subpopulations (in con-
trast to individuals). In this population model the subpopulations are
panmictic and from time to time some individuals migrate between the
subpopulations according to some connectivity graph: The vertices of
the graph are the subpopulations whereas the directed edges are the
migration paths. In [1] the authors develop a plausible approximation
(without bounds) for some special cases.

This was the starting point of this work: We show how to derive
rigorous bounds for the takeover time for parallel populations with mi-
gration. For this purpose some mathematical facts are introduced in
section 2 before the analysis is presented in section 3.

2. Mathematical Preliminaries

In the course of the analysis given in section 3 we need bounds on
Harmonic numbers:

Definition 1
The symbol H,, denotes nth Harmonic number for some n € N where

"1
i=1

Likewise, the nth Harmonic number of 2nd order H,(LQ) is given by

n

H :Z;Q

i=1
for n > 1. O
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Notice that
log(n) < Hy <log(n) + 1

for n > 2 and

for n > 1.

Definition 2
A random variable G is geometrically distributed with support N if
P{G=Fk}=p(1—p)F " for some p € (0,1) C R. 0

The expectation and variance of G are

E[G] = ; resp. V] = s (1)

Definition 3

Let X1, X9,...,X, be independent and identically distributed (i.i.d.)
random variables. Then Xj., denotes the minimum and X,,.,, the max-
imum of these random variables. O

Let D[ X | = \/V[X ] denote the standard deviation of some random
variable X. There exists a general result regarding bounds on the ex-
pectation of the minimum and maximum:

Theorem 1 (David 1980, p. 59 and 63)

Let X1, Xo, ..., X,, be ani.i.d. sequence of random variables. The bounds
E[X] > E[Xi]- ——1 p[xy]
1 = 1 \/m 1
n—1
E[Xnn] < E[Xi1]|+ —D[X
[ ] [ 1 ] \/m [ 1 ]
are valid regardless of the distribution of the X;. O

3. Analysis

Let G = (V, ) denote a directed graph where each vertex v € V repre-

sents a subpopulation and each directed edge e = (v,v’) € F a migration
path from subpopulation v to subpopulation v'. Random variable Xét)
specifies the number of individuals with best fitness at iteration ¢ > 0

of subpopulation v € V with X Igo) = 1 for a single subpopulation k£ and
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Xéo) = 0 for v # k. The number of individuals s in each subpopula-
tion is constant over time, identical for all subpopulations, and finite.
Moreover, we make the following general assumptions:

(A1) Selection in subpopulations is elitist.
(A2) Migration takes place every mth generation with finite m € N.

(A3) Emmigration policy: a copy of the best individual travels along
each migration path.

(A4) Immigration policy: replace the worst individual of the subpopu-
lation with the immigrant (if it is better than the worst one).

Let T}, = min{t > 0 : x{ = s} be the random takeover time of sub-
population v € V and A, the random arrival time, i.e., the number of
iterations until the first individual with best fitness arrives at subpopu-
lation v € V. In general, the arrival times are not identically distributed.
Their distributions depend on the connectivity or migration graph and
in which subpopulation the initial best individual has emerged. If the
migration path is vertex-symmetric (like Cayley graphs) the latter de-
pendency vanishes. Here, we shall assume that the initial best individual
emerges at vertex v = 0 and we rename the other vertices accordingly.
Then

T:maX{To,Al—|—T1,A2—|—T2,...,An+Tn} (2)

is the takeover time of the migration model with n + 1 subpopulations
considered here. Notice that random variables T, are i.i.d. for v > 1
whereas the distribution of Ty is different: Once a best copy has arrived
at subpopulation v > 1, every mth generation at least one another best
copy immigrates to this subpopulation regardless of the selection process
within the subpopulation. Therefore it takes at most ms iterations
until all individuals in some subpopulation v > 1 are copies of the best
individual regardless of the selection process. Thus,

T, <ms (3)

with probability 1 (w.p. 1) for v > 1. If m is large the bound above
becomes useless since it is likely that the takeover event happens before
the first migration interval is over. Therefore we define random variable
T! which is the takeover time of subpopulation v if no further migration
takes place once a best copy has arrived. As a consequence, we have

T, <T, (4)

w.p. 1 for all v > 0. Notice that T}, T}, ..., T}, are i.i.d. random variables.
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3.1 Uni-directional Ring Topology

Suppose that the subpopulations are placed at the vertices of a uni-
directional ring. Then the takeover time in eqn. (2) specializes to

T =max{Ty,m+T1,2m+Ts,...,nm+T,} (5)

for a finite migration interval m € N. Once a best individual has emerged
at vertex 0 it takes m generations until this best individual migrates to
vertex 1. Now it takes again m iterations until a best copy migrates to
vertex 2 and so forth. As soon as a best copy has arrived at some vertex
v it takes T, iterations at vertex v until all individuals are copies of the
best individual. Evidently, T' can be bracketed as follows:

nm +min{7Ty,...,T,} <T <nm+max{Ty,...,T,}. (6)

Using (4) in the right hand side (r.h.s.) of inequality (6) we obtain the
bound
T <nm+max{T},...,T,}

for the takeover time T" and hence the bound
E[T] <nm+E[T) 1.041] (7)

for the expected takeover time. Usage of (3) in the r.h.s. of inequality
(6) yields E[T'] < nm + m s which leads to the bound

E[T] <nm+min{ms,E[T)_ 1., ]} (8)

in consideration of (7). Owing to Theorem 1 the bound in (7) can
be expressed in terms of the expectation E[T{] and standard deviation
D[T}] of T}. We obtain

nD[T}]
V2n+1°

But as long as nothing is known about the selection operation within
the subpopulations the distribution and therefore the moments of T
remain unknown. Therefore we assume that each subpopulation runs a
steady-state EA with a selection method that does not erase any copy
of the best individual contained in the current population. In this case
expectation and variance can be calculated as follows [9]: If i denotes
the number of best copies of the current population then the value of
¢ is a nondecreasing sequence. Let p;;i1 be the probability that the
next population will contain 7 + 1 best copies and p;; = 1 — p; ;41 the
probability that the number of best copies will not change, provided

E[T] <nm-+E[T)]+ (9)
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the current number of best copies is ¢. Then the random number G
of generations until ¢ changes to ¢ + 1 is geometrically distributed with
expectation and variance

1 _m. .
E[Gi] = resp. V[G;] = #
Dii+1 Piiva
fori =1,...,s — 1. Since Gy,...,Gs—1 are mutually independent we
obtain
s—1 s—1 1
E[Ty] = Y E[Gi] = Z (10)
i—1 pz a+1
s—1 s—1 1 p
— 1
VITp] = D VG = > —= (11)
i=1 i=1 pz sitl

for the takeover time T{. Next, we choose a specific selection method
to exemplify our approach developed so far. The method called 'Re-
place Worst’-selection first draws two individuals at random with uni-
form probability. Subsequently the better one of the pair replaces the
worst individual of the entire population. Therefore, ¢ is incremented if
at least one copy of the best individual is drawn. We obtain

. 2 . .
7 1(2s—1
Piit1 = 1—<1—> _ 12aci)

S S

and finally owing to (10)
1
E[T}] = 5 (s Hys—1 —1). (12)

The result for the expectation above can be found in [9] already. Here,
we also need a result for the variance. According to (11) we obtain

V[T/} o § 1 — Piji+1 § (S - Z)2 82

= Plan = (25 -2
s—1 s 9 s

< - -1 i <

= Z(z ) since s—i_l
=1
s—1 2

s 2s

- Y (52

=\t ]

—2slog(s—1)+s—1 if s>3
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and since s/(2s —1i) > 1/2

»
|

VETIEID Dl S o )

1 i=1

(s*H®, —2sH, 1 +5—1)

= | r—lﬂk\Hﬁ-

> —(s*—2slog(s—1)—s—1)

revealing that V[T}] = ©(s?) or D[T}] = O(s). Insertion in (9) yields
the bound

Hoo 7 —1 2 -2
E[T] < nm+ 2 2821 +\/2:zlﬁ =T —2slog(s—1)+s—1
1 2 2 2
< nm+w+ g 86 +1 (f0r5>2
slog(28 n
= nm-+ ——— 2 ST E 327'(2
log(2
< nm+80§<S>+M %

= O(nm+ slogs+ sy/n)

and taking into account the bound given in (8) we obtain

log(2s) | [n } |

5 6 (13)

E[T]<nm+s min{m,
A closer inspection of the upper bound (13) reveals that the bound could
be strengthened with respect to the additive part m1/n/6 which stems
from the generality of Theorem 1. If the distribution of the random
variables are taken into account then the bound for the maximum will
become more accurate. We have made 30 independent experiments for
each combination of (n 4+ 1) € {10, 20, 30, 40, 50, 60, 70, 80,90, 100}, s €
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000}, and m € {1,
2,3,4,5,10,20,30,40,50,100}. Here, we only present the 10 worst re-
sults with regard to absolute (see table 1) and relative deviation (see
table 2) between the bound in (13) and the observed mean.

Finally, we sketch a potential avenue to strengthen the result; its
elaboration remains for future work. Recall from the discussion leading
to (10) that the G; are geometricly distributed random variables with
parameter p; ;11 and that Tj) is just the sum of the G; fori =1,...,s—1.
Thus, the maximum of n + 1 samples of T} is the maximum of n + 1



n+1 s m min max mean bound abs. A A%
1000 100 50 50149 50253 50196.8 54118.8 3922.0 7.81
1000 100 100 100107 100236 100166.6 104068.8 3902.2 3.90
1000 100 40 40149 40282 40207.3 43960.0 3752.7 9.33
1000 90 50 50111 50257 50178.7 53699.9 3521.2 7.02
1000 90 100 100078 100243 100157.2 103649.9 3492.7 3.49
1000 90 40 40111 40240 40169.7 43560.0 3390.3 8.44
1000 80 50 50103 50198 50140.1 53281.2 3141.1 6.26
1000 80 100 100072 100178 100114.4 103231.2 3116.8 3.11
1000 80 40 40095 40189 40143.5 43160.0 3016.5 7.51
1000 100 30 30153 30258 30202.7 32970.0 2767.3 9.16

Table 1. Results of experiments with the ten worst absolute deviations (abs. A)
between bound and observed mean.

n+1 s m min max mean bound abs. A A%
10 100 5 170 196 184.5 544.8 360.3 195.29
10 90 5 157 187 171.9 492.8 320.9 186.66
10 80 5 144 172 157.2 441.0 283.8 180.52
10 70 5 132 161 144.6 389.4 244.8 169.33
10 100 4 146 175  164.7 436.0 271.3 164.72
10 60 5 115 145  128.7 338.2 209.5 162.81
10 90 4 141 160 150.7 396.0 245.3 162.77
10 70 4 116 135 124.1 316.0 191.9 154.63
10 80 4 127 153  140.3 356.0 215.7 153.74
20 100 5 215 247  236.8 595.0 358.2 151.27

Table 2. Results of experiments with the ten worst relative deviations (A%) between
bound and observed mean.

sums of geometric random variables. Since max{a; + bj,as + b} <
max{ai,az} + max{by, b2} we obtain an upper bound by the sum over
the maxima of s—11i.i.d. (!) geometric random variables. Unfortunately,
the expectation of the maximum of geometric random variables cannot
be determined exactly, in contrast to its minimum. But we can use the
asymptotic theory of extreme value distributions [3] for getting some
evidence that the maximum increases by order log(n) D[ T} ] rather than
order \/n D[T}]. Thus, we conjecture that

E[T]=O(nm+ s min{m,logs + logn}).

3.2 Bi-directional Ring Topology

The modifications of the results required in case of subpopulations at
the vertices of a ring with bi-directional migration paths are straightfor-
ward: It takes (n + 1) m/2 generations until an individual from each of



Takeover Time in Parallel Populations with Migration 9

the two possible migration paths arrive at the last vertex if n is odd (i.e.,
if the number of subpopulations is even). Therefore the upper bounds
are

(n+1)m

E[ 7] <

+max{T}, T},...,T.}

and

(n+1)m
E[T] Sf—kms.

In the following we can use the same arguments and bounds as those
from the preceding subsection.

3.3 Almost Arbitrary Connected Topology

Let G = (V,€) denote the directed graph describing the migration
paths between subpopulations. Needless to say, we assume that the
graph is connected and that each vertex can be reached from any other
vertex of the graph. As the preceding two examples have shown, the
takeover time can be bounded by the time to reach each vertex in the
graph (which is bounded by the diameter of the graph) plus the time
required for takeover in n+ 1 parallel subpopulations. Consequently, the
expected takeover time of (almost) arbitrary graphs can be bounded by
the two bounds

E[T] < diam(G) m + max{T},T},...,T,}

and
E[T] < diam(G)m +ms.

Of course, these bounds can be improved if more information about a
graph is known. For example, if we have a d-regular bi-directional graph
then at least one best copy enters the population initially, d best copies
will leave at the next migration event, and from now on d copies of the
best individual will enter the subpopulation at each migration event.

4. Conclusions

It has been shown that the takeover time in parallel populations with
migration is bounded by the diameter of the migration graph plus the
time until takeover in parallel population occurs. These takeover times
are dependent on the selection operation deployed in each subpopula-
tion. Here, we have developed bounds for a particular non-generational
selection method. It is conjectured that the bounds can be improved con-
siderably as soon as a sufficiently tight bound for E[ max{T}, 17, ..., T, } ]
has been developed. In case of non-generational selection methods an
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appropriate bound for the maximum of geometrically distributed ran-
dom variables is required. These tasks and the development of tight
lower bounds will be part of future work.
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