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Abstract. This paper addresses the problem of controlling mutation strength in
multi-objective evolutionary algorithms. Adaptive parameter control is one major
issue in the field of evolutionary computation, and several methods have been
proposed and applied successfully for single objective optimization problems. In
this study we examine whether these results carry over to the multi-objective case
and what kind of modifications must be taken to meet the difficulties and pitfalls
of conflicting objectives.

1 Introduction

Evolutionary algorithms have shown to be a useful auxiliary tool for approximating
the Pareto set of multi-objective optimization problems. Much effort has been taken
to cope with the evaluation and selection of solutions on the basis of partially ordered
objective spaces. Research focusing on the role of the variation operators in evolution-
ary multi-objective optimization has remained comparatively rare. Though most algo-
rithms simply apply standard operators from the single-objective case, their behavior in
the presence of multiple objectives may differ substantially, particularly concerning the
adaptation of mutation intensities [1].

When large search spaces are to be explored, adaptive variation operators are manda-
tory to achieve both, a satisfactory rate of progress towards the optimum and a high pre-
cision of solutions. In this study we explore the behavior of a standard self-adaptive evo-
lution strategy (SA-ES) with Pareto-based selection and a spatially distributed predator-
prey EA [2] for different multi-objective test functions (see Table 1).

2 Test scenario

We examine an algorithm’s ability to produce a sequence of solutions that converges to
the Pareto set. Therefore the average population distance to the set of efficient solutions
(in decision variable space) is computed and compared to the average expected mutation
step size. The search space is IR™ with n = 100 and an individual is coded — as usual
in evolution strategies — as an n-dimensional vector of floating point numbers for the
decision variables. Additional strategy parameters o; € R™,i € {1,...,n,} represent
the standard deviation (’step size’) of the normal-distributed random vectors used for
mutation. Discrete recombination is used for the decision variables and intermediate
recombination is used for the mutation step sizes.
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Table 1. Test functions F'1 (multi-sphere model) and F2 (multi-modal)

P{F1(x)<F1(mut(x))} —— E[progress | F1(x)<F1(mut(x))] ——
P{F1_1(x)<F1_1(mut(x))} - E[progress | F1_1(x)<F1_1(mut(x))] -
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Fig. 1. Estimated success probabllltles (left) and expected normalized progress (rlght) for muta-
tions (step size o) of individuals with distance dist to the optimum on F1.
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Fig. 2. Median population distance (left) and expected step length (right) over time (number of
function evaluations) on F1

3 Behavior on the multi-sphere model (F1)

It is known from the single-objective case that standard self-adaptive evolution strate-
gies exhibit linear order convergence on the sphere model (here: first component of
F1). For the multi-sphere model, however, this property seems to be valid only indi-
viduals which are *sufficiently far away’ from the Pareto-optimal set. After a period of
geometrically decreasing population distance to the Pareto set, the solutions suddenly
start to oscillate around a small but fixed final distance (Fig. 2). An explanation can
be deduced from Fig. 1: Not only the success rate decreases, but also the normalized
average progress for successful mutations. Thus, it is increasingly difficult to proceed
closer to the Pareto set, if successes are judged via the dominance relation.

A remedy might be found in the single-objective selection scheme of the predator-
prey-EA. In the original version exactly A = 1 offspring was produced for each individ-
ual deleted by a predator, but this does not improve convergence (Fig. 2). When A > 1
offspring are produced, and the best one is selected for survival, further convergence
can be achieved. However, for increasing A the rate of convergence decreases.



4 Behavior on a multi-modal function (F2)

It has been shown recently that self-adaptive mutations may not guarantee convergence
to the global optimum in multi-modal fitness landscapes [3]. Simulations on the first
component of F2 as a multi-modal single objective function revealed that it is very dif-
ficult to reach the basin of attraction of the global optimal solution. On average, the
(15/2,100)-ES was able to adjust 90 % of the decision variables; applying the weaker
binary tournament selection instead lead to 95 % adjustment. These problems also hin-
der convergence of the (15,100)-ES in the multi-objective case.

The predator-prey EA, however, seems to overcome this problem of premature con-
vergence in both cases, if A > 0 is chosen. Again, large A values mean more individuals
to evaluate and thus shows slower convergence rates in respect to the number of objec-
tive function evaluations.

5 Conclusions

In this study we examined the problem of controlling mutation strength in multi-objective
evolutionary algorithms. The results show that the standard self-adaptive evolution strate-
gies have difficulties to converge to the Pareto set due to the low success probabil-
ity of Pareto based selection. Alternative selection methods like the predator-prey ap-
proach discussed here are a possibility to overcome this limitation. A disadvantage of
this method, however, is the lower rate of convergence due to the less efficient single-
criterion selection. It may be speculated whether a hybrid method using Pareto-based
selection for a fast but rough localization of the Pareto set and single-criterion selection
for an accurate approximation would be appropriate.

Another possible way to improve the convergence properties of self-adaptive MOEAS
might be a combination of low selection pressure (to diminish the danger of premature
convergence) and elitism (to prevent possible divergence caused by increasing mutation
step sizes and low selection pressure). Also the topic of diversity needs a thorough in-
vestigation in connection with convergence in self-adaptive MOEAs. Finally, it should
be emphasized that these results are entirely based on numerical experiments and em-
pirical evaluation. Theoretical analysis could fundamentally improve the understanding
of the effects of these heuristic methods.
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