
Convergence Rates of Evolutionary Algorithms

for a Class of Convex Objective Functions

G�unter Rudolph

Universit�at Dortmund
Fachbereich Informatik� LS XI
D������ Dortmund � Germany

rudolph�icd�de

April ��� ����

Abstract

Probabilistic optimization algorithms that mimic the process of biological evo�

lution are usually subsumed under the term �evolutionary algorithms�� This work

extends the convergence theory of evolutionary algorithms by presenting a su�cient

convergence condition for those evolutionary algorithms that do not necessarily gen�

erate a sequence of feasible points such that the associated objective function values

decrease monotonically to the global minimum� Moreover� it is investigated how

fast the sequence of objective function values generated by an evolutionary algo�

rithm approaches the minimumof strongly convex functions in a probabilistic sense�

The theoretical analysis presented here distinguishes from related studies in three

points� First� it does not require advanced calculus� Second� only the 	rst partial

derivatives of the objective function are assumed to exist� Third� one obtains sharp

bounds on the convergence rates for a class of functions being a superset of the class

of quadratic functions with positive de	nite Hessian matrix�

� Introduction

Evolutionary algorithms 	EAs
 belong to the class of probabilistic optimization algo�
rithms whose design is inspired by principles of biological evolution� A population of
individuals
each of them representing a feasible solution of an optimization problem

repeatedly undergoes a cycle of random variation and selection which leads in many cases
to practically acceptable solutions and sometimes even to globally optimal solutions�
The typical �eld of application of EAs are di�cult optimization problems for which
specialized methods are not available or traditional methods fail for reasons whichever�
Here� it is analyzed how fast a speci�c subclass of EAs approaches the minimum of a
convex function� Although convex objective functions are not an appropriate domain
for EAs 	such problems can be solved by deterministic optimization methods more
e�ciently
 it is not useless to consider them� since an optimization method that is
intended to tackle just the most di�cult problems also ought to be �su�ciently e�cient�
for simple problems�
Investigations in this direction have a long list of predecessors� Early publications 	Ras�
trigin ����� Schumer and Steiglitz ����� Rechenberg ����
 considered algorithms� later
classi�ed as 	���
�EA� that may be interpreted as the simplest form of an evolutionary
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process� A single individual is randomly mutated and the worse of the original and
the new point is selected to �die�� The objective function under consideration was the
sum of squares of n real�valued variables� A considerable extension of these results is
presented in Rappl 	����
 who investigated the performance of the same algorithm for
a class of objective functions that is essentially identical to the class considered here�
Another avenue of extension was entered in Schwefel 	����
� pp� �������� The objec�
tive function was again the sum of squares but a single individual now generates � � �
o�spring by random mutations and the best of the o�spring and the parent becomes the
parent of the next generation� Alternatively� the new parent is chosen solely among the
� o�spring� Although this petty modi�cation might seem to be neglectable it has the
theoretically signi�cant e�ect that the new parent may be worse than the old one� This
algorithm� known as 	�� �
�EA� was investigated in case of quadratic objective func�
tions 	interpreted as second order Taylor expansion of the original objective function

in Rechenberg 	����
� pp� ������ by exploiting the principal axis theorem� and in Beyer
	����
� pp� ������ via Riemannian di�erential geometry� Compared to these investiga�
tions the approach taken here has three advantages� First� the analysis does not require
advanced calculus� Second� only the �rst partial derivatives of the objective function are
assumed to exist� Third� one obtains sharp bounds on the convergence rates for a class
of functions being a superset of the class of quadratic functions with positive de�nite
Hessian matrix� This is shown in section ��
But prior to these calculations it is useful to clarify the underlying meaning of stochastic
convergence� Moreover� it is not obvious whether a 	�� �
�EA will converge 	in a sense
whichever
 to the optimum or not� Those questions are addressed in section �� The
main result actually is an extremely simpli�ed version of the supermartingale approach
presented in Rudolph 	����
� An alternative route is proposed in Yin� Rudolph� and
Schwefel 	����
 via tools developed for the analysis of stochastic approximation methods
in continuous time� The work presented here� however� will concentrate on evolutionary
algorithms with discrete time�
The bounds on the convergence rates developed in section � are involved with a constant
that depends in a nonlinear manner on the problem dimension n and the number of
o�spring �� In principle� this constant can be determined for any speci�c pair 	n� �
 but
the e�orts required
especially for large n and �
do not pay for the utility of knowing
the exact values� Therefore section � is devoted to the development of asymptotical
expressions� Finally� some conclusions are drawn in section ��

� A Su�cient Convergence Condition

Since the state transitions of an evolutionary algorithm are of stochastic nature the
deterministic concept of the �convergence to the optimum� is not appropriate� In order
to clarify the exact semantic of a phrase like �the EA converges to the global optimum�
one has at �rst to distinguish between the various modes of stochastic convergence�

Definition �
Let Z� Z�� Z�� � � � be random variables de�ned on a probability space 	��A�P
� The
sequence 	Zk � k � �
 is said to converge with probability � 	w�p��
 or almost surely
	a�s�
 to random variable Z if Pf limk�� jZk � Z j � � g � �� to converge in probability
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to Z if Pf jZk � Z j � � g � o	�
 as k � � for any � � �� and to converge in mean to
Z if E� jZk � Z j  � o	�
 as k ��� �

Both convergence with probability � and convergence in mean implies convergence in
probability whereas the converse is wrong in general 	Lukacs ����� pp� �����
� With
the de�nitions above one can assign a rigorous meaning to the notion of the convergence
of an evolutionary algorithm�

Definition �
Let 	Xk � k � �
 be the sequence of populations generated by some evolutionary algo�
rithm and let F �k � minff	Xk��
� � � � � f	Xk��
g denote the best objective function value
of the population of size � � � at generation k � �� An evolutionary algorithms is
said to converge in mean 	in probability� with probability �
 to the global minimum
f� � minff	x
 � x � IRng of objective function f � IRn � IR if the nonnegative ran�
dom sequence 	Zk � k � �
 with Zk � F �k � f� converges in mean 	in probability� with
probability �
 to zero� �

The convergence theory of probabilistic optimization methods resembling a 	� � �
�EA
was established in Devroye 	����
� Oppel and Hohenbichler 	����
� Born 	����
� Solis
and Wets 	����
� Pint!er 	����
� and others� The proofs in each of these publications
exploited the algorithms" property that the parent of the next generation cannot be worse
than the current one� i�e�� it is guaranteed by the construction of the algorithms that
the stochastic sequence 	Zk � k � �
 is monotonically decreasing� The result presented
below only requires the weaker precondition that the sequence 	Zk � k � �
 decreases
monotonically on average� As a consequence� the objective function value of the best
parent may be worse than that of the best parent of the previous generation
as it may
happen for the sequence 	Zk � k � �
 generated by a 	�� �
�EA�

Theorem �
Let 	Xk � k � �
 be the sequence of populations generated by some evolutionary algo�
rithm and let F �k � minff	Xk��
� � � � � f	Xk��
g denote the best objective function value
of the population at generation k � �� If E�Zk  �� and

E�Zk�� jXk� Xk��� � � � � X�  � ck Zk a�s� 	�


where Zk � F �k � f� and ck � � �� �
 for all k � � such that the in�nite product of
the ck converges to zero� then the evolutionary algorithm converges in mean and with
probability � to the global minimum of the objective function f	�
�
Proof�

Taking expectations on both sides of inequality 	�
 yields

E�Zk��  � E�E�Zk�� jXk� Xk��� � � � � X�   � ck E�Zk  

for all k � �� This implies

E�Zk  � E�Z�  
k��Y
i��

ci �� �

as k � � since the in�nite product of the ci converges to zero and E�Z�  � � by the
preconditions of the theorem� Thus� the sequence 	Zk � k � �
 converges in mean to
zero�
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As for convergence with probability �� notice that inequality 	�
 implies that the non�
negative sequence 	Zk � k � �
 is a nonnegative supermartingale that converges w�p�� to
a random variable Z �� 	Neveu ����� p� ��
� This ensures that 	Zk � k � �
 converges
in probability to Z� But since 	Zk � k � �
 also converges in probability to zero by the
�rst part of the proof� and since the limits are unique 	Lukacs ����� p� ��
� one may
conclude that Z � �� Consequently� the random sequence 	Zk � k � �
 converges w�p��
to zero� �

� Convergence Rates for Strongly Convex Functions

The notion of the #convergence rate" of an iterative optimization method is well estab�
lished is the �eld of deterministic optimization� It serves as a measure of how fast the
deterministic sequence of objective function values approaches the global optimum� For
example� let 	xk � k � �
 be the sequence of points generated by some deterministic
minimization method and �k � f	xk
 � f�� The method is said to converge geometri�
cally fast if there exists an index k�� a constant A � � and a constant c � � �� �
 such
that �k � Ack for all k � k�� Here c is termed the convergence rate� Following this
de�nition a related concept for stochastic sequences is given below�

Definition �
Let 	Zk � k � �
 be a nonnegative random sequence de�ned by Zk � F �k � f� where F �k
is the best objective function value of a population of some evolutionary algorithm at
generation k � �� The evolutionary algorithm is said to converge geometrically fast in
mean 	in probability� w�p��
 to the global minimum if there exists a constant q � � such
that the sequence 	qk Zk � k � �
 converges in mean 	in probability� w�p��
 to zero� Let
q� � � be supremum of all constants q � � such that geometrically fast convergence is
still guaranteed� Then c � �	q is called the convergence rate� �

Let $Zk � qk Zk with q � � and assume that E�Zk�� jXk  � ck Zk for all k � � in the
sense of Theorem �� Since

E� $Zk�� jXt  � qk��
E�Zk�� jXk  � qk�� ck Zk � q ck $Zk a�s�

for all k � �� it su�ces to �nd a constant c � 	�� �
 with ck � c to ensure geometrically
fast convergence to the optimum with probability � and in mean� For example� one may
set q � �		c� �
 � � to guarantee that c q � 	�� �
� Thus� it was proven�

Theorem �
Let 	Xk � k � �
 be the sequence of populations generated by some evolutionary algo�
rithm and let F �k � minff	Xk��
� � � � � f	Xk��
g denote the best objective function value
of the population at generation k � �� If E�Zk  �� and

E�Zk�� jXk� Xk��� � � � � X�  � c Zk a�s�

where Zk � F �k � f� and c � 	�� �
 for all k � � then the evolutionary algorithm
converges with probability � and in mean geometrically fast to the optimum of the
objective function f	�
� �
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Evidently� it cannot be expected that an evolutionary algorithm converges geometrically
fast to the optimum for arbitrary objective functions� Rather� this property is likely to
be restricted to a tiny subset of the set of all possible objective functions� As will be
shown in the sequel� objective functions of the type introduced below are included in
this subset�

Definition �
Let f � S 	 IRn � IR� Then f is called 	K�Q
�strongly convex if for all x� y � S and for
each 
 � � �� �  the inequalities

K

�

 	�� 

 k x� y k� � 
 � f	x
 � 	�� 

 � f	y
� f	
x� 	�� 

 y
 � L

�

 	�� 

 k x� y k�

with � � K � L �� K �Q �� are valid� �

For example� every quadratic function f	x
 � x�Ax� b�x� c is 	K�Q
�strongly convex
if the Hessian matrix r�f	x
 � �A is positive de�nite� Another example is the function

f	x�� x�
 � � x�� � � x�� � � x� � � x� � � x� arctanx� � log	x�� � �
 � � cos x� � 	�


In case of twice di�erentiable functions� Nemirovsky and Yudin 	����
� p� ���� have
o�ered a simple condition to verify the 	K�Q
�strong convexity of some function f	�
�
Let �� be the smallest and �� be the largest eigenvalue of the Hessian matrix� If there
exist positive constants K and L such that � � K � �� � �� � L �� for all x � S then
the function f	x
 is 	K�Q
�strongly convex with Q � L	K� Owing to this condition
one easily �nds K � � and L � �� for the function given in equation 	�
� Alternatively�
the same result can be obtained from the result below which presupposes only the
availability of the gradient rf	x
 of the function under consideration�

Theorem � 	G�opfert ����� pp� �������

Let f � S 	 IRn � IR be continuously di�erentiable and S an open convex set� Then
the following statements are equivalent�

	a
 f is 	K�Q
�strongly convex�

	b
 K k x� y k�	� � f	x
� f	y
�rf	y
� 	x� y
 � L k x� y k�	� for all x� y � S�

	c
 K k x� y k� � 	rf	x
�rf	y

� 	x� y
 � L k x� y k� for all x� y � S� �

These characterizations lead to a result that will be useful later on�

Lemma �

If f � S 	 IR� � IR is di�erentiable and 	K�Q
�strongly convex then for all x � S

krf	x
 k�
�L

� f	x
� f	x�

Q�

	�


where x� � S denotes the global minimum point of f	�
�
Proof�

Since rf	x�
 � � for the optimum the setting y � x� in Theorem �	c
 leads to the
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inequality K k x� x� k� � rf	x
� 	x� x�
 that can be further bounded by the Cauchy�
Schwarz inequality yielding K k x� x� k� � rf	x
� 	x� x�
 � krf	x
 k � k x� x� k � If
k x� x� k � �� which may be presupposed� one obtains

krf	x
 k� � K� k x� x�k� � 	�


Insertion of y � x� in Theorem �	b
 delivers k x�x�k� � � � f	x
�f	x�
  	L and together
with inequality 	�
 one �nally obtains the desired result� �

Consider a 	�� �
�EA and let the objective function f � IRn � IR be 	K�Q
�strongly
convex� The current parent Xk is mutated via Xk � rk Uk where rk � � and Uk is a
random vector uniformly distributed on the boundary of the unit hyperball of dimension
n � �� Owing to Theorem �	b
 the random objective function value f	Xk � rk U
 can
be bounded by

f	Xk � rk U
 � f	Xk
 � rkrf	Xk

�U � r�k U

�U � L	� � 	�


Notice that the Euclidean length of vector U is kUk � � with probability �� It follows
that U �U � kUk� � � and inequality 	�
 reduces to

f	Xk � rk U
 � f	Xk
 � rkrf	Xk

�U � r�k L	� � 	�


For further simpli�cations we need the following result�

Lemma � 	Yin� Rudolph� and Schwefel ����� p� ���

If U is a random vector uniformly distributed on the boundary of the unit hyperball of
dimension n � � and x � IRn with kxk � �� then the random scalar product B � �x�U
possesses a Beta distribution with probability density function

p	x
 �
���n 	�� x�
�n�����

B	n��� � n��� 

� �������	x


where B	�� �
 denotes the complete Beta function and �A	x
 is the indicator function of
some set A� The mean� mode� and median of B is zero while the variance is �	n� �

Thus� inequality 	�
 is equivalent to

f	Xk � rk Uk
 � f	Xk
� rk krf	Xk
kB � r�k L	� 	�


where B is a Beta random variable as speci�ed in Lemma �� Since the 	�� �
�EA
generates � o�spring and chooses the best among them to serve as the new parent� the
random objective function value of the new parent is equivalent to the value of the best
o�spring and it can be bounded via

f	Xk��
 � minff	Xk�rk Ui
 � i � �� � � � � �g � f	Xk
�rk krf	Xk
kB�	��r�k L	� 	�


by taking into account inequality 	�
 and where B�	� denotes the maximum of � indepen�
dent and identically distributed Beta random variables� Taking conditional expectations
on both sides of 	�
 yields

E� f	Xk��
 jXk  � f	Xk
� rk krf	Xk
kE�B�	�  � r�k L	�� 	�
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Di�erentiation of 	�
 with respect to rk leads to the optimal choice

r�k �
krf	Xk
kM�

L
	��


where M� � E�B�	�  � After insertion of r�k into inequality 	�
 and subtraction of f� on
both sides� inequality 	�
 becomes

E� f	Xk��
� f� jXk  � f	Xk
� f� � krf	Xk
k�M�
�

�L
	��


� f	Xk
� f� � 	f	Xk
� f�
M�
�

Q�

�

�
�� M�

�

Q�

�
� 	f	Xk
� f�
 	��


by inserting inequality 	�
 given in Lemma � into to the r�h�s� of inequality 	��
� Owing
to Theorem � and inequality 	��
 it is guaranteed that the 	�� �
�EA will converge with
probability � and in mean to the optimum� provided that M� � �� Moreover� since
c � � �M�

�	Q
� � 	�� �
 for M� � � it is guaranteed by Theorem � that the rate of

approach to the optimum is geometric in mean and with probability �� To show that
M� � � for � � � the result below is useful�

Lemma � 	David ����� p� �

Let Y�� � � � � Y� be independent and identically distributed continuous random variables
with probability density function p	�
 and distribution function P 	�
� If these random
variables are ordered such that Y�	� � Y�	� � � � � � Y�	� then the probability density
function of Yi	� is

pi	�	x
 �
p	x
P i��	x
 � �� P 	x
  ��i

B	i� �� i� �


where B	�� �
 denotes the complete Beta function� �

Since the probability density function of random variable B is symmetrical with respect
to zero the identities p	�x
 � p	x
 and P 	�x
 � � � P 	x
 are valid� It follows that
P 	x
 � �	� for x � � and hence

M� � E�B�	�  �

�Z
��

x p�	�	x
 dx � �

�Z
��
x p	x
P 	x
 dx� �

�Z
�

x p	x
 � �P 	x
� �  dx � �

	because of the positivity of the integrand for x � �
 and �nally M� � M� � � for
� � �� Notice that the actual values of M� also nonlinearly depend on the dimension n�
Despite this fact there is 
 in principle 
 no problem to calculate M� for each n � ��
For example�

M� �

���������
b���cX
i��

	� i
%

�� i

�
�

� i

�
	��
i�� � 	�� � mod �
 	��
����� �%

��
if n � ��

�� �

�� �
if n � �

with � � IN� Apart from few exceptional cases� however� the resulting expressions
become more and more complicated the larger is the value of n� Therefore� the next
section is devoted to the investigation of the asymptotics of constant M��n�
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� Asymptotics

Since M��n depends on two parameters one has to investigate two subcases� First� the
asymptotics of M��n for �xed � and n � �� Second� the asymptotics for �xed n and
� � �� The basic technique rests on the idea to approximate the distributions of the
random variables by appropriate limit distributions� For this purpose one needs the
notion of the weak convergence of probability measures�

Definition �
Let fP 	x
� Pi	x
 � i � INg be a collection of distribution functions of the random variables
fY� Yi � i � INg on some probability space� If Pi	x
� P 	x
 as i�� for every continuity
point x of P 	�
� then the sequence Pi	�
 of distribution functions is said to converge weakly
to P 	�
� denoted as Pi

w� P � In such an event� the sequence of random variables Yi is

said to converge in distribution to Y � denoted as Yi
d� Y � �

Convergence in distribution is implied by convergence in probability whereas the con�
verse is wrong in general 	Lukacs ����� p� ��
� If the random variables are continuous
and the sequence of probability density functions converge to the limit variable"s p�d�f�
for each of its continuity points then a theorem in Sche�!e 	����
 ensures weak conver�
gence of the associated distributions functions� This result may be used for the case
with �xed � � IN and n���

Lemma �
Let Bn be a Beta random variable parametrized by n � � as speci�ed in Lemma �� If

Yn �
p
nBn then Yn

d� Y 
 N	�� �
 as n � �� where N	�� �
 denotes the standard
normal distribution with zero mean and unit variance� �

Proof�

As mentioned previously it su�ces to show that the probability density functions qn	�

of the random variables Yn converge to the probability density function q	�
 of the
standard normal random variable Y for every continuity point of q	�
 as n � �� Let
pn	�
 denote the p�d�f� of random variable Bn� Since Yn �

p
nBn the probability density

transformation rule leads to the p�d�f�

qn	x
 �
�p
n
pn

�
xp
n

	
�

�p
n

���n

B		n � �
	�� 	n� �
	�


�
�� x�

n

��n�����
���pn�pn�	x
�

Note that
�p
n

���n

B		n� �
	�� 	n� �
	�

� �p

� �

�
�� x�

n

��n�����
� exp

�
�x

�

�

�

���pn�pn�	x
 � �������	x


as n�� for every �xed x � IR� Thus� one obtains

lim
n�� qn	x
 �

�p
� �

exp

�
�x

�

�

�
�������	x
 	��


�



for every continuity point x � IR of q	�
� Since the r�h�s� of equation 	��
 is the p�d�f�

of a standard normal random variable it has been shown that
p
nBn

d� Y 
 N	�� �
 as
n��� �

An immediate consequence of this lemma is the result below�

Theorem �
Let B�	�	n
 be the maximum of � independent and identically distributed 	i�i�d�
 Beta
random variables as in Lemma � 	parametrized by n � �
� If Y�	� denotes the maximum

of � i�i�d� standard normal random variables� then
p
nB�	�	n


d� Y�	� as n���
Proof�

Let qn	�
 and Qn	�
 be the probability density function and the distribution function
of random variable

p
nB	n
� respectively� Recall from Lemma � that qn

w� q as well
as Qn

w� Q as n � �� where q	�
 and Q	�
 denote the p�d�f� respective distribution
function of a standard normal random variable� Owing to this fact and Lemma � one
obtains for �xed � � IN

q���
n	x
 � � qn	x
Q���
n 	x
 �� � q	x
Q���	x
 � q���	x


for every continuity point of q���	x
 as n��� This ensures that the distribution func�
tions associated with random variables

p
nB�	�	n
 converges weakly to the distribution

function of the maximum of � i�i�d� standard normal random variables as n��� �

This result reveals that the distribution of random variable B�	�	n
 is approximately
equal to the distribution of n���� Y�	� for large n and hence

M��n � E�B�	�	n
  � n���� E� Y�	�  � n����C�

where C� � E� Y�	�  denotes the mean of � standard normal random variables� The
actual values of C� can be analytically determined and expressed in terms of elementary
functions up to � � � 	see David ����� pp� �����
� In general� the bounds

&��
�

�� �

�

	
� C� � &��

�
�� �

��

	
	��


are valid 	David ����� p� ��
� where &��	�
 denotes the inverse of the standard normal
distribution function� Since C� � ����� � ������� C���� � ������� and C� must increase
monotonically� it is obvious that the rate of increase must decline considerably for in�
creasing �� In fact� taking into account that the value of C� can be bracketed as noted in
	��
 it can be shown 	David ����� p� ���
 that roughly C� � 	� log�
��� for su�ciently
large �� Accurate approximations of C� can be easily obtained by numerical integration�
They are tabulated� for example� in Rechenberg 	����
� pp� �������� up to � � �����
Figure � reveals that the approximation M��n � n����C� becomes more accurate the
larger is the value of n � �� For example� even for the relatively low dimension n � ��
the relative error is less than � ' for � � ���
As for the second subcase with �xed n � � and �� �� some results from the asymp�
totical theory of extreme order statistics are needed�
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Figure 
� Ratio between the approximation n����C� and the exact values of M��n�

Theorem � 	Leadbetter et al� ����� Chapter �

Let (x � supfx � IR � P 	x
 � �g � �� 
 � �� and Y�	� be the maximum of � indepen�
dent and identically distributed continuous random variables which possess distribution
function P 	�
� The following statements are equivalent�

	a
 lim
h���

�� P 	(x� x h


�� P 	(x � h

� x� for all x � � �

	b
 Pf a� 	Y�	� � b�
 � x g w�� G�	x
 �



exp	�	�x
�
 � x � �

� � x � �

where a� � 	(x� ��
��� b� � (x� and �� � inffx � IR � P 	x
 � �� �	�g� �

Let W be the random variable with distribution function G�	�
 as given above and sup�
pose that part 	a
 of Theorem � holds true for Beta random variables with a distribution
function as speci�ed in Lemma �� Then part 	b
 of the theorem reveals that B�	� has
approximately the same distribution as a��� W�b� for large � and one may approximate
the mean via E�B�	�  � a��� E�W  � b�� Since (x � � and �W is Weibull distributed

��



with E��W  � )	� � �	

 one obtains

E�B�	�  � �� 	�� ��
 � )	� � 
��
 �

Notice that part 	a
 of Theorem � indeed holds true since

lim
h���

�� Pn	�� x h


�� Pn	�� h

� lim

h���

x pn	�� x h


pn	�� h

� lim

h���
x

�
� x� x� h

�� h

�n��
�

� x�n�����

where Pn	�
 and pn	�
 are the distribution respective probability density function of the
Beta random variable parametrized by n � �� Thus� 
 � 	n��
	�� It remains to �nd an
expression for ��� For this purpose one has to �nd at least an asymptotical solution of
the equation Pn	��
 � �� ��� for ���� Since the p�d�f� is symmetrical with respect
to zero an equivalent condition is

Pn	���
 � �	� � 	��


It is clear that necessarily �� � � as ���� Notice that

Pn	x
 � PfB � x g � Pf � $B � � � x g � P

�
$B �

x� �

�

�
� $Pn

�
x � �

�

	
where $B is a Beta random variable with probability density function

$pn	x
 �
x�n����� 	�� x
�n�����

B	n��� � n��� 

� ������	x
 �

Using the relationships above� condition 	��
 changes to

Pn	���
 � $Pn	$��
 � �	� 	��


where �� � �� � $��� Entry ������� in Abramowitz and Stegun 	����
 reveals that the
distribution function of $Bn can be expressed by the Gauss hypergeometric series

$P 	x
 �
� x�n�����

	n� �
B	n��� � n��� 

�F�

�
n� �

�
� �n � �

�
�
n� �

�
� x

	
�

where �F�	�
 stands for the Gauss series as de�ned in entry ������ in Abramowitz and
Stegun 	����
� that reduces to a polynomial in x for odd n � �� It su�ces to consider
this special case� As a result� the condition 	��
 becomes

� $P 	$��
 �
�� $�

�n�����
�

	n� �
B	n��� � n��� 



���� �

n��
�X

i��

�
n��
�

i

�
	��
i

n � �

n� � � � i
$�i�

���� � � � 	��


Notice that necessarily $�� � � since �� � � as � � �� In this case the term in the
brackets of equation 	��
 converges to � because each term in the sum converges to
zero for $� � �� The term left to the term in the brackets describes the asymptotics of
the entire expression since it contains the least power of $��� namely of order 	n� �
	��

��



whereas all other terms are of higher order converging faster to zero than $�
�n�����
� �

Therefore one may approximate condition 	��
 by the asymptotical condition

�� $�
�n�����
�

	n� �
B	n��� � n��� 

� � �

The solution of this equation is

$�� �

�
n� �

�
B

�
n� �

�
�
n� �

�

	 � �
n�� � �����n���

which leads
after several resubstitutions
to the �nal asymptotical expression

M��n � cM��n �� �� �

�
n� �

�
B

�
n� �

�
�
n � �

�

	� �
n�� � )

�
� �

�

n� �

	
� �����n���

for large � and �xed n � �� The quality of the approximation may be expressed by
the ratio cM��n	M��n� To avoid waste of computing time only few ratios have been
calculated�� They are summarized in Table � below�

n n � � �� �� �� ���

� ����� ����� ����� ����� �����
� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� �����

Tab� 
� Ratios cM��n�M��n�

Two observations can be made� First� the ratio approaches � for increasing �� Second�
the asymptotical expression cM��n is closer to the true value M��n the smaller is the
value of n� The latter observation is not surprising because the neglected �nite sum in
the brackets of condition 	��
 contains products in which n appears in type of binomial
coe�cients� As a consequence� the larger is the value of n the larger must be the value
of � such that the sum becomes su�ciently small�

� Conclusions

In the course of section � it was tacitly presupposed that the evolutionary algorithm has
access to a subroutine that returns the Euclidean length of the gradient
an assumption
that is usually not justi�ed in practice� But it can be shown 	Rudolph ����� pp� ����
���
 that it is su�cient to estimate the gradients" length up to a relative error of ����
' to ensure geometrical convergence rates in case of 	K�Q
�strongly convex functions�
In real world evolutionary algorithms this task is accomplished by a mechanism termed
#auto�adaptation" 	see e�g� B�ack and Schwefel ����
� but a mathematically rigorous
proof of this property is still pending�

�Note that M��n is a rational number for odd n � �� It can be exactly calculated but the costs to do

so are not neglectable� For example� both the nominator and denominator of M������ are integers with

���� digits each and it took more than �� hours CPU time to obtain them�

��



Several results presented here can be sharpened� Theorem � remains valid if #convergence
with probability �" is replaced by the stronger property of #complete convergence" 	this
concept was introduced in Hsu and Robbins ����
� The proofs of Lemma � and Theorem
� show the convergence of the probability density functions for each continuity point of
the limit random variable"s probability density function� This is actually stronger than
the weak convergence of the distribution functions� But the demonstration of these
subtle di�erences was omitted in favor of an easy presentation�
Finally� it should be noticed that the convergence rates derived for the 	�� �
�EA are also
valid for the practically more relevant 	�� �
�EA� Here� each of the � parents generates
m � �	� � IN o�spring 	m � �
� Under the assumption that the di�erences between
parents and o�spring are solely caused by mutations� then the convergence rate of the
	�� �
�EA can be bounded by c � � � M�

m�n	Q
� � 	�� �
 for 	K�Q
�strongly convex

functions�
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