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Abstract—This paper offers a classification of the main repre-
sentatives of interactive classical and evolutionary methods. After
a crossfertilization of these two fields a new hybrid interactive
reference point method is designed and implemented with a
graphical user interface. Finally, it is validated on two well-known
real-world test problems.

I. INTRODUCTION

Many real world problems have conflicting multiple objec-

tives which a decision maker would like to optimize simul-
taneously. In high-dimensional multi-objective optimization
problems it is a time consuming task to calculate the whole
Pareto front. Interactive methods - methods which include the
decision maker in the algorithm - try to solve the problem by
calculating only solutions which are interesting for the user.
From the classical side interactive algorithms are mainly
developed as a decision support since the 1960s. Mainly, since
2002 [26] there is a huge interest to combine the interactive
classical methods with ideas of Computational Intelligence to
solve problems in a computational faster manner.
In section II some basic definitions are introduced, followed
by a classification of interactive classical and evolutionary
methods in section III. The new hybrid interactive reference
point method and the corresponding graphical user interface
are presented in section IV. We validate our approach by some
test problems in section V. Finally, a summary and an outlook
are provided in section VI

II. PRELIMINARIES

A multi-objective optimization problem is given by

min  f(%),

1
subjectto X€ S b

where § C R" is the feasible region and f: S — RM the vector-
valued objective function. Since there is no natural total order
on vectors the concept of dominance is used for comparison.

Definition 1 (Pareto Domination): A vector X is Pareto
dominating a vector y (denoted by X <y ) iff

D xi <y Vi=1,....M

2) x;i <y Jie{l,...,M}.
With the help of the domination operator it can be theoretically
determined if a solution x* is optimal, i.e. there exists no
solution which dominates x*.
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Definition 2 (Pareto Optimal): A point x* € S is Pareto
optimal, if for every x € § it holds:

FxesS: f(x) = f(x). 2)

Very useful are the ideal and nadir objective vectors. If each
objective function is individually optimized the constitution of
each solution builds the ideal vector. The nadir vector gives
an upper bound of the objective functions according to the
Pareto optimal set (see Figure 3). For all these definitions see
e.g. [9].

III. INTERACTIVE CLASSICAL AND EVOLUTIONARY
METHODS

The idea of including the decision maker (DM) in the
decision process is the best method for satisfying the DM—
the main goal of the analyst. For that purpose there are a
lot of interactive classical methods which are traditionally
classified into two classes: information required from the
user and the inner resolution strategy [19]. Some possible
criteria to compare classical methods are e.g. the ease of
use of the method or the number of iterations to find the
compromised solution [1]. In general an interactive approach
can be characterized by following procedure:

1) Find a preferably feasible and efficient solution.

2) Interact with the DM to obtain his response to the
solution.

3) Repeat steps 1 and 2 until satisfaction is reached or until
some other termination criterion is met.

Classifying the classical methods according to the DM’s
preferences is one usual method. Hence, the DM is the person
deciding about his most preferred solution and about his way
to find one satisfactory solution. Subsequently, we present a
user-based classification where the DM gets an overview about
his involving in each method and what kind of information
will be required by the chosen method. Figures 1 and 2
are providing fifteen methods [36] including the reference
point method. There exist some more classical methods as
listed above but the list is limited to the traditional ones. The
former figure displays at which step each method reaches at
least one feasible solution. The second figure gives an insight
into the procedure handling of each method regarding to the
feasible solution. Both figures are modelling only the main
aspect of each method to give a quick overview about the
interactive method landscape. The user is the central aspect.
He (assuming the DM is a male individual) can give some new
information or modification at a solution after each calculation
step. The circled and rectangled boxes present the user-sided
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and analyst-sided interaction in each method path. The other
boxes represent the next problem to solve to obtain the squared
box, a feasible solution. The arrows indicate the output of a
chosen method or the requirements for the next method/box.

Random search heuristics, especially evolutionary
algorithms (EAs), are adapted to these methods to hopefully
improve the computational time especially in high-dimensional
problems. The existing interactive evolutionary multi-objective
(I-EMO) methods can be classified based on:

« Reference Point [7], [24], [45], [40], [14], [36]

o Reference Direction [11]

o Light Beam Search [10]

« Tools [31], [6], [36]

« Modified EMO [4], [34], [30]

o Neuronal Networks [29], [42], [38]

¢ Simulated Annealing / Tabu Search [2], [20], [41]
« Utility Function

— Fuzzy Logic [25], [17], [27], [35], [32], [8]

— Comparison [23], [5], [33], [39], [3], [37]
Definitely, there is not a strong seperation between each
class but the presented classification is one possible way to
categorize each method.

The new hybrid interactive reference point method is inte-
grated in the class of reference point methods as well as
in tools. Many I-EMO methods try to combine the idea
of a classical method with an existing EMO. Some of the
approaches try to determine the utility function of the user in
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Landscape of the classical methods until the user gets a feasible (often Pareto optimal) solution. For a detailed description see [36].

an explicit form or using fuzzy logic to transform the user’s
thoughts and assessments to numbers.

Most of the implemented classical algorithms are based on
the reference point idea [43]. This observation is most likely
caused by the fact that the idea is very simple and the
used concept of scalarizing functions controls the success of
the algorithm. The problem on the classical side with the
reference point method is that it sometimes takes a lot of
computational time for solving non-linear problems, whereas
this idea combined with evolutionary algorithms results in a
more satisfying computational time.

Furthermore, most of the implemented interactive EAs only
have an alphanumeric interface which might not be as user-
friendly as a graphical user interface.

The developed algorithm combines the classical idea of the
reference point with the (1 +1) - EA. Hence, the idea of
using a scalarizing function as a distance measure is a good
selection operator and fitness function in the EA. The user
decides about some reference points and the hybrid algorithm
optmizes the desirable goals due to the direction to the Pareto
front. The DM can interact through the GUI, for instance
by changing weights or altering reference points before the
hybrid algorithm optimizes taking into account these new
adjustments. The implemented algorithm is restricted to two-
and three-objective problems and is at the moment restricted
to nonlinear optimization problems.

Next, the hybrid interactive reference point method is ex-
plained, followed by an application of the implemented
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conditions and MRS for marginal rates of substitution. For a detailed description see [36].

method on two engineering design problems.

IV. HYBRID INTERACTIVE REFERENCE POINT METHOD
A. Algorithm

The algorithm is a combination of a (14 1) - EA and an
achievement scalarizing function. For obtaining a (weakly, &-
properly [9] or) Pareto optimal solution a special distance
measure, called scalarizing function, is often used (Figure 3).
As the proposed achievement scalarizing function the distance
between the achievement solution (e.g. the reference point)
and the current solution are weighted and maximized over
each component. Additionally, a small term is added to the
maximum to guarantee the finding of Pareto optimal solutions
instead of weakly Pareto optimal solutions (see equation
3). In each step the best parent solution is mutated with
the polynomial mutation operator [9] to create an offspring
solution and the best of them, the minimum of both solutions,
is the new parent solution in the next step. If the DM is
satisfied with the assessed final solution, the neighborhood
of this solution can be also displayed. For this purpose the
DM determines the search distance to the final solutions and a
(141) - EA with a scalarizing function is started with slightly
altered originally weights adapting the preferred distance from
the user. Finally, the user should choose the most compromised
solution.

1) Ask the DM to select n of reference points Z with
i€{l,...,n} for the optimization problem under con-
sideration. Set 1 = 1.

2) Present n feasible starting points zf.’ to the DM.

f2 i

Lt
f1

Fig. 3. In this figure the concept of the achievement scalarizing function
is given at a two-dimensional problem whereas Z is the objective space,
Znagir 1S the nadir vector, z;4., is the ideal vector, z* is the obtained Pareto
optimal solution and zgy is the chosen reference point. The bold line is the
Pareto optimal front. The arrow symbolizes the direction to the Pareto optimal
solution determined by the weighting vector and the lines of zgr to the Pareto
front marked the bounds for the weighting vector.

3) Ask the DM to specify an aspiration level for each ob-
jective at each starting point zf-’, resulting in a reference
point Ef'

4) Calculate the next solution with a (14 1) - EA where

o the mutation operator is the polynomial mutation
with p = ﬁ,
« the fitness function is the achievement scalarizing



function s(z!, (w,z")) :

S <h h —h h
maximize;—1,_.m[w;- (Z;—zj)]+p- Z wij- (Zij—2zij)
j=1
3)
where p > 0 is a small augmentation scalar (here,

p =0.000001).

5) The selection operator prefers the minimum of the
fitness function.

6) Present each assessed solution and the relating reference
point to the DM.

7) If the DM is satisfied with this direction but not with the
solution, go to step 4 with zf’“ = z?. Set h =h+1. If the
DM is also satisfied with the calculated solution, the DM
can start a local multi-gradient search algorithm, a mod-
ified Pareto descent method [22], [21], to improve the
solution values if there exist the partial derivatives. The
direction calculation from the Pareto descent method is
combined with the step size control presented in [18].
Present the final solution to the DM and determine
some solutions which have a user-defined distance to
the final solution by altering slightly the weights of
the scalarizing function. Calculate some neighborhood
solutions with the (1 + 1) - EA and the scalarizing
function, again.

Otherwise go to step 3.

B. Graphical User Interface

First, the user has to choose his problem in the configuration
window and determine the number of mutation generations,
the number of gradient calculations and the number of starting
solutions which fixed the number of reference points (see
Figure 4). If he presses the button “OK” the main program
will start. Within the GUI (see Figure 5) the user is working
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Fig. 4. The starting point in the program will be a configuration window.
Therein the user can choose his optimization problem and some maximum
boundarys as the number of starting solutions.

in the objective space. He can choose the number of solutions
to work with and can give several aspiration levels for each
objective - summarized to a reference point with the support
of sliders and adjust different weights for each objective
according to his preferences. In the textboxes at the buttom of
the GUI the DM can see the current assessed values at each
step as the detailed variable vector values. The buttons on the

top right-hand side are giving to the user some possible events
such as the button “Show all” to display all calculated solutions
(see Figure 5). Underneath the button area there are some user
installed parameter and the above mentioned slider. As in this
figure it is possible to create an approximated Pareto front
by the calculated solutions and the neighborhood solutions
as seen in the graphical view. The second implemented GUI
displays a demonstrator where the DM can see the assessed
Pareto front of the NSGA-II [13] at the top right-hand side
and can interact inside the window. The third dimension is
represented by colors as in [28].

V. APPLICATIONS

Our pragmatic approach to describe “How does the appli-
cation work?” applies our method to two real-world problems
such as the biobjective Welded Beam Problem [15] and the
three-objective Car Side Impact Problem [12].

A. Real-World Problem Welded Beam

The welded beam design problem has to minimize the
two objectives cost of fabrication (f;) and end deflection of
the welded beam (f>) and as variables the variable vector
z = (b,h,l,t). Figure 7 gives an insight into the calculated
approximated Pareto Front of the problem. Formally, the
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Fig. 7. The approximated Pareto front of the welded beam design problem
with the NSGA-II with the support of the Demonstrator version.

problem looks like

minimize  fi(z) = 1.10471h2 +0.04811¢b(14.0+ 1),
minimize f3(z) = 2,139;,527
subjectto  g1(z) = 13,600 — 7(z) > 0,

g2(z) = 30,000 — 5(z) > 0,

g3(z) =b—h=>0,

84(z) = Pe(z) — 6,000 > 0,

0.125 <5 <5.0,0.125 <h < 5.0,
0.1 <71<10.0,0.1 <¢<10.0.

The first constraint g; ensures that the shear stress developed
at the support location of the beam is smaller than the allow-
able shear strength of the material (13,600 psi). The second
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constraint g» makes sure that normal stress developed at the
support location of the beam is smaller than the allowable yield
strength of the material (30,000 psi). The third constraint g3
makes sure that thickness of the beam is not smaller than the
weld thickness from a practical view. The fourth constraint g4
makes sure that the allowable buckling load (along ¢ direction)
of the beam is more than the applied load F = 6,000 lbs. A
violation of any of the above four constraints will make the
design unacceptable. The stress and buckling terms are non-
linear to design variables and are given as follows

() = é/(r')2+(T”)2+(zr’r”)/\/o.25(12+(h+t)2),

r_ 000
T= V2hi’
= 6,000(14-+0.51)4/0.25(12+(h+t)2)
- 2{0.707hl(1/12+0.25(h+1)2)}
and
504,000
G(Z) = 2p

P.(z) = 64,746.022(1 —0.0282346¢)b3.

The starting solutions have the values as shown in Table 1.
In the Interactive Reference Point - Display the DM chooses
every solution seeing the minimum objective values of each

The test problem ZDT?2 [44] has been solved by five reference points. The resulted solutions are creating an approximated Pareto front.

Objective Values (f1, f2) Variable Vector z Aspiration Levels

(46.623, 47232 - 10 %) (4787, 0.8419, 4.7972, 9.902) (1494, 42 - 100 %)

(18.0252, 16.87997) (3.988, 1.3922, 7.7935, 0.3195) (8.28, 0.0015)

(231.935, 0.00183) (4.5843, 4.6061, 8.54027, 6.39103)  (11.52,8.4 - 10°7)

(82.4304, 3.6095) (0.15529, 4.3055, 4.0149, 1.57626) (0, 0)

(189.8575, 0.00335) (2.3469, 4.9748, 6.3939, 6.5339) (18, 0.002)

TABLE I
THE TABLE SHOWS THE STARTING SOLUTIONS OF THE DESIGN PROBLEM
WELDED BEAM. EACH LINE REPRESENT A SOLUTION FROM 0 TO 4.

starting solution. Consequently, he adjusts the upper bounds of
the slider. The lower bounds of zero is an ideal point for each
objective. The new upper bound vector is B = (fi, fiz) =
(18,0.002). For the DM the cost factor is more important than
the end deflection of the welded beam, so that he changes the
weights to wye,, = (0.7,0.3). The aspiration levels are chosen
in respect to the new bounds. For solution three he chooses the
ideal point and for solution four the current worst objective
value. The resulted solutions are given in Table II. The DM
sees the minimum bound 0.26 units for fabrication cost at
solution three. So he decides to get only solutions which have
maximum costs of five units and alters the relating bound of
objective one of the slider. According to this change, the DM
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Fig. 6. The well-known three dimensional testproblem DTLZ2 [16] at the demonstrator version. The third color represents the third dimension in the small

window on the right-hand side.

Solution Objective Values ( fl’ fz) Variable Vector z Objective Values (fi, f2) Variable Vector z Aspiration Leve;l
— T (4.3506, 0.0034) (06417, 0.125, 0.10, 10.0) __(4.35, 42 - 10 )
0 (14.939, 9.969 - 1077) (2.202, 0.125, 0.1, 10.0) 2701, 0.0055) (03979, 0.125, 0.1, 10.0) (2.7, 0.0015)
1 (8.226, 0.0018) (1.212, 0.126, 0.10, 9.99) {1,105, 0.00135) 0.1625, 0.125, 0.1, 10.0) (1.1, 84 - 10°%)
2 (11.5202, 0.0013) (1.7014, 0.125, 0.1, 9.98) (1.503, 0.0099) (0.2214, 0.125, 0.1, 10.0) (1.5, 0.0017)
3 02615, 0.6103) (0.125, 0.125, 0.1, 3.0641) @997, 0.00298) (07367, 0.125, 0.10, 100) (3.0, 0.00)
4 (17.993, 8.277 - 1074) (2.6523, 0.125, 0.1, 10.0) TABLE III

TABLE I
THE TABLE SHOWS THE CURRENT SOLUTIONS OF THE DESIGN PROBLEM
WELDED BEAM AFTER A CALCULATION STEP.

gives five new reference points by choosing new aspiration
levels for objective one and increases the number of mutation
generation to 10000 to find final solutions (see Table III). The
user prefers solution one with s; = (f1, f2) = (2.701,0.0055)
and z = (b,h,l,t) = (0.397,0.125,0.1,10.0). He attempts to
optimize the solution with the local improvement approach
and generates some solutions close to the chosen one. As
final action the DM starts the Demonstrator with the same
adjustments to obtain the position of the final solution on the
approximated Pareto front.

THE TABLE SHOWS THE FINAL SOLUTIONS OF THE DESIGN PROBLEM
WELDED BEAM. EACH LINE REPRESENT A SOLUTION FROM 0 TO 4.

B. Real-World Problem Car-Side Impact

The car-side impact problem is a real world problem
whereas a car is subjected to a side-impact based on European
Enhanced Vehicle-Safety Committee (EEVC) procedures. The
effect of the side-impact on a dummy in terms of head
injury (HIC), load in abdomen, pubic symphysis force, viscous
criterion (V *C), and rib deflections at the upper, middle and
lower rib locations are considered. The effect on the car is
considered in terms of the velocity of the B-Pillar at the middle
point and the velocity of the front door at the B-Pillar. An
increase in dimension of the car parameters may improve the
performance on the dummy but the increased weight of the car



may have an adverse effect on the fuel economy. Thus, there is
a need to come up with a design having a balance between the
weight and the safety performance. The three-dimensional car-
side impact problem has seven design variables, ten constraints
and is dealing with the best trade-off solution between the car
parameter (f1 and f3) and the personal safety (f>) (Figure 8).

First, the DM determined his reference function to adjust

Nagir

Fig. 8. The approximated Pareto front of the car-side impact design problem
with the NSGA-II with the support of the Demonstrator version. The third
dimension represents the color gradient from black to white (colored as
turquoise).

some weights. His reference function is objective two, im-
plying personal safety is more important than the weight of
the car and the velocity of the V-Pillar, so that the weights
are chosen as w = (wy, w2, w3) = (0.25,0.5,0.25). The range
for each objective can be seen from the current solutions and
the DM provides approximate bounds for each objective. For
objective one the values are between 20 and 38 units. For
the pubic symphysis force the values are between 3.7 and
4.5 kN, and the average of the velocities lies in [11.5,13]
per mm/ms. Accordingly to the bounds he sets the reference
points (see Table IV) and starts the optimization process. The

Solution | Objective Values (f1, f2) Aspiration Level
0 (37.40, 3.7538, 11.7182)  (23.6, 4.396, 12.475)
1 (28.714, 43268, 11.782)  (30.98, 3.952, 11.964)
2 (21.519, 4.212, 12.769) (38.0, 4.388, 12.115)

TABLE IV
STARTING SOLUTIONS OF THE DESIGN PROBLEM CAR-SIDE IMPACT.

resulting solutions are checked by the user in relation to his
value function. Now, he starts the local improvement to obtain
better results. Afterwards, he increases the mutation generation
to 10000. At the end, he generates the neighborhood solution
for the most compromising solution one, because the value
has the smallest value for all solutions in the second objective
(see Table V).

VI. SUMMARY

In the first part of the paper there is a classification
approach of the existing classical and evolutionary interactive

Objective Values (fi, f2) Aspiration Level Neighborhood One

(22.926, 4.059, 11.802) (23.6, 4.396, 12.475) (30.583, 3.754, 11.5678 )

(30.580, 3.75316, 11.5662)  (30.98, 3.952, 11.964) (30.58168, 3.7528, 11.5657)

(36.7748, 3.7759, 10.8909) (38.0, 4.388, 12.115) (30.5847, 3.75437, 11.5687 )

TABLE V
FINAL SOLUTIONS OF THE DESIGN PROBLEM CAR-SIDE IMPACT. EACH
LINE REPRESENT A SOLUTION FROM 0 TO 2.

methods. Presently, there are only few GUI-based interactive
implemented algorithms available. This study applies the
reference point idea to a GUI-based application as a new
approach. It is validated on several well-known test problems
as well as real world problems. The implemented hybrid
interactive reference point method presents the current
solutions to the DM in each step. He determines the direction
by aspiration levels for each objective and an approximate
step size by the number of mutation generation. The direction
can be influenced by a weighting vector which alters the
found solutions by the used achievement scalarizing function.
In the applications shown, the computation time of this
algorithm is very small even though we have used the
default values. As a consequence, the DM obtains results
very quickly. This is important, since the response times of
interactive methods must be as short as possible.

In the future it should be possible to check the final solution
for Pareto optimality and to integrate more than one decision
maker in the algorithm and in the GUI, respectively. This
will target the group decision methods. At the moment the
method is restricted to the objective space. Maybe it could be
possible to extend the idea to the decision space, too. Also,
more than three-dimensional problems could be displayed
by the idea of using different colors in the GUI as in the
three-dimensional case shown. Finally, adding several hybrid
methods as a combination of the GDF method with a (1+1)
- EA or a neuronal network to determine the approximated
utility function could be a more efficient support for the
DM. Hence, he is able to compare the solutions after each
calculation step. For all these extension ideas some more
detailed investigations are required.
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