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Abstract

Evolutionary Programming and Evolution Strategies�
rather similar representatives of a class of probabilis�
tic optimization algorithms gleaned from the model of
organic evolution� are discussed and compared to each
other with respect to similarities and di	erences of their
basic components as well as their performance in some
experimental runs� Theoretical results on global conver�
gence� step size control for a strictly convex� quadratic
function and an extension of the convergence rate the�
ory for Evolution Strategies are presented and discussed
with respect to their implications on Evolutionary Pro�
gramming�

� Introduction

Developed independently from each other� three main
streams of so�called Evolutionary Algorithms� i�e� algo�
rithms based on the model of natural evolution as an
optimization process� can nowadays be identi
ed� Evo�
lutionary Programming �EP
� developed by L� J� Fogel
et al� in the U�S� ����� Genetic Algorithms �GAs
� devel�
oped by J� Holland also in the U�S� ����� and Evolution
Strategies �ESs
� developed in Germany by I� Rechen�
berg ���� and H��P� Schwefel �����
These algorithms are based on an arbitrarily initial�

ized population of search points� which by means of ran�
domized processes of selection� mutation� and �some�
times
 recombination evolves towards better and bet�
ter regions in the search space� Fitness of individ�
uals is measured by means of an objective function
to be optimized� and several applications of these al�

�baeck�ls���informatik�uni�dortmund�de
yrudolph�ls���informatik�uni�dortmund�de
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gorithms to real�world problems have clearly demon�
strated their capability to yield good approximate so�
lutions even in case of complicated multimodal topo�
logical surfaces of the 
tness landscape �for overviews
of applications� the reader is referred to the conference
proceedings ���� ��� ��� �� �� ��� ��� or to the annotated
bibliography ���
�

Until recently� development of these main streams was
completely independent from each other� Since �����
however� contact between the GA�community and the
ES�community has been established� con
rmed by col�
laborations and scienti
c exchange during regularly al�
ternating conferences in the U�S� �International Con�
ference on Genetic Algorithms and their Applications�
ICGA� since ����
 and in Europe �International Confer�
ence on Parallel Problem Solving from Nature� PPSN�
since ����
� Contact between the EP�community and
the ES�community� however� has been established for the

rst time just in ����� For algorithms bearing so much
similarities as ESs and EP do� this is a surprising fact�

Similar to a paper comparing ES and GA ap�
proaches ����� the aim of this article is to give an intro�
duction to ESs and EP and to look for similarities and
di	erences between both approaches� A brief overview
of the historical development of ESs as well as an ex�
planation of the basic algorithm are given in section ��
In section �� the basic EP�algorithm is presented� Sec�
tion � then serves to discuss theoretical results from ESs
and their possible relations to the behaviour of an EP�
algorithm� Section � presents a practical comparison
of both algorithms� using a few objective functions with
di	erent topological shapes� Finally� an overview of simi�
larities and di	erences of both approaches is summarized
in section ��



� Evolution Strategies

Similar to EP� ESs are also based on real�valued object
variables and normally distributed randommodi
cations
with expectation zero� According to Rechenberg �����

rst experimental applications to parameter optimiza�
tion� performed during the middle of the sixties at the
Technical University of Berlin� dealt with hydrodynam�
ical problems like shape optimization of a bended pipe
and a �ashing nozzle� The algorithm used was a sim�
ple mutation�selection scheme working on one individ�
ual� which created one o	spring by means of mutation�
The better of parent and o	spring is selected determin�
istically to survive to the next generation� a selection
mechanism which characterizes this two membered or
����
�ES� Assuming inequality constraints gj � IRn �
IR �j � f�� � � � � � vg
 of the search space� an objective
function f �M � IRn � IR �where the feasible region M
is de
ned by the inequality constraints gj
� a minimiza�
tion task� and individual vectors x�t
 � IRn� where t
denotes the generation counter� a ����
�ES is de
ned
by the following algorithm�

Algorithm � �����
�ES


t �� ��
initalize P ��
 �� fx��
g�

such that �j � gj�xP ��

 � ��
while termination criterion not ful�lled do

mutate P �t
 � x��t
 �� x�t
 � � � z�t

with probability density
p�zi�t

 �

�p
��

exp
���

�
�zi�t

�

�
�

evaluate P �t
 � f�x�t

� f�x��t

�
select P �t� �
 from P �t
�

if f�x��t

 � f�x�t

 and �j � gj�x��t

 � �
then x�t � �
 �� x��t

else x�t� �
 �� x�t
�

t �� t� ��
od

To each component of the vector x�t
 the same stan�
dard deviation � is applied during mutation� The vari�
ation of �� i�e� the step�size control of the algorithm� is
done according to a theoretically supported rule which is
due to Rechenberg ����� For the objective functions f��
a linear corridor of width b�

f��x
 � F�x�
 � c� � c�x�

�i � f�� � � � � ng � �b�� � xi � b��

and the sphere model f��

f��x
 � c� � c� �
nX
i��

�xi � x�i 

� � c� � c� � r� � ��


he calculated the optimal expected convergence rates�
from which the corresponding optimal success probabil�
ities popt 	 ����� and popt 	 ����� can be derived for

f� and f�� respectively� This forms the basis of Rechen�
berg�s ��� success rule �����

The ratio of successful mutations to all muta�
tions should be ���� If it is greater� increase� if
it is less� decrease the standard deviation ��

For this algorithm� Schwefel ���� suggested to measure
the success probability p by observing this ratio during
the search and to adjust � � ��t
 according to

��t
 �

��
�

��t � �
 � c � if p � ���
��t � �
�c � if p � ���
��t
 � if p � ���

��


For the constant c� he proposed to use c � ������n� Do�
ing so� yields convergence rates of linear order in both
model cases�

The multimembered ES introduces the concepts pop�
ulation� recombination� and self�adaptation of strategy
parameters into the algorithm� According to the selec�
tion mechanism� the ���	
�ES and ���	
�ES are dis�
tinguished� the 
rst case indicating that � parents cre�
ate 	 � � o	spring individuals by means of recombina�
tion and mutation� The � best individuals out of parents
and o	spring are selected to form the next population�
For a ���	
�ES with 	 � � the � best individuals are se�
lected from the 	 o	spring only� Each individual is char�
acterized not only by a vector x of object variables� but
also by an additional vector of strategy variables� The
latter may include up to n di	erent variances cii � ��i
�i � f�� � � � � ng
 as well as up to n � �n � �
�� covari�
ances cij �i � f�� � � � � n � �g� j � fi � �� � � � � ng
 of the
generalized n�dimensional normal distribution having a
probability density function

p�z
 �

s
detA

��

n
exp

�
��

�
zTAz

�
� ��


Altogether� up to w � n��n��
�� strategy parameters
can be varied during the optimum search by means of a
selection�mutation�recombinationmechanism� To assure
positive�de
niteness of the covariance matrix A��� the
algorithm uses the equivalent rotation angles �j �� �
�j � �

 instead of the coe�cients cij � The resulting
algorithm reads as follows�



Algorithm � ����	
�ES� ���	
�ES


t �� ��
initialize P ��
 �� fa���
� � � � � a���
g � I�

where I � IRw�
ak � �xi� cij � cji �i� j � f�� � � � � ng j � i
�

evaluate P ��
�
while termination criterion not ful�lled do

recombine a�k�t
 �� r�P �t

 �k � f�� � � � � 	g�
mutate a��k�t
 �� m�a�k�t

�
evaluate P ��t
 �� fa����t
� � � � � a����t
g�

�ff�x��� �t

� � � � � f�x����t

g
�
select P �t� �
 �� if ���	
�ES

then s�P ��t

�
else s�P ��t
 
 P �t

�

t �� t� ��
od

Then� the mutation operator must be extended ac�
cording to �dropping time counters t
�

m�ak
 � a�k � �x�� ��� ��
 � I � ��


performing component�wise operations as follows�

��i � �i � exp��� ����
 � exp�� ���i


��j � �j � 
 ���j

x�i � xi � zi��
�� ��
 �

��


This way� mutations of object variables are correlated
according to the values of the vector �� and � provides a
scaling of the �linear
 metrics� Alterations �� and ��
are again normally distributed with expectation zero
and variance one� and the constants �� � ���

p
�
p
n
�

� � ��
p
�n� and 
 	 ������ ���
 are rather robust ex�

ogenous parameters� ���� scaled by ��� is a global fac�
tor �identical for all i � f�� � � � � ng
� whereas ��i is an
individual factor �sampled anew for all i � f�� � � � � ng

allowing of individual changes of �mean step sizes� �i�
Concerning recombination� di	erent mechanisms can

be used within ESs� where in addition to the usual re�
combination of two parents global mechanisms allow for
taking into account up to all individuals of a population
during creation of one single o	spring individual� The
recombination rules for an operator creating an individ�
ual a� � �x�� ��� ��
 � I are given here representatively
for the object variables�

x�i �

������
�����

xS�i ��

xS�i or xT�i ��

xS�i � u � �xT�i � xS�i
 ��

xSi�i or xTi�i ��

xSi�i � ui � �xTi�i � xSi�i
 ��


��


Indices S and T denote two arbitrarily selected par�
ent individuals� and u is a uniform random variable on

the interval ��� ��� Besides completely missing recombi�
nation ��
� the di	erent variants indicated are discrete
recombination ��
� intermediate recombination ��
 and
the global versions ��
� ��
 of the latter two� respectively�
Empirically� discrete recombination on object variables
and intermediate recombination on strategy parameters
have been observed to give best results�

� Evolutionary Programming

Following the description of an EP algorithm as given by
Fogel ��� and using the notational style from the previous
section� an EP algorithm is formulated as follows�

Algorithm � �EP


t �� ��
initialize P ��
 �� fx���
� � � � � x���
g � I�

where I � IRn�
evaluate P ��
� F�xk��

 � G�f�xk��

� �k
�
while termination criterion not ful�lled do

mutate x�k�t
 �� m�xk�t

 �k � f�� � � � � �g�
evaluate P ��t
 �� fx���t
� � � � � x���t
g�

�fF�x���t

� � � � �F�x���t

g
�
select P �t� �
 �� s�P �t
 
P ��t

�
t �� t� ��

od

Besides a missing recombination operator� 
tness eval�
uation� mutation� and selection are di	erent from cor�
responding operators in ESs� Fitness values F�xi
 are
obtained from objective function values by scaling them
to positive values �function G
 and possibly by imposing
some random alteration �i� For mutation� the standard
deviation for each individual�s mutation is calculated as
the square root of a linear transformation of its own 
t�
ness value� i�e� for mutationm�x
 � x� ��i � f�� � � � � ng
�

x�i � xi � �i � z
�i �

p

i � F�x
 � �i �

��


Again� the random variable z has probability density
p�z
 � �p

��
exp��z���
� This way� for each component

of the vector x a di	erent scaling of mutations can be
achieved by tuning the parameters 
i and �i �which�
however� are often set to one and zero� respectively
�
The selection mechanism s � I�� � I� reduces the set

of parents and o	spring individuals to a set of � parents
by performing a kind of q�tournament selection �� � q
�
In principle� for each individual xk from P �t
 
 P ��t
 q
individuals are selected at random from P �t

P ��t
 and
compared to xk with respect to their 
tness values Fj
�j � f�� � � � � qg
� Then� it is counted for each of the q
selected individuals whether xj outperforms the individ�
ual� resulting in a score wj between � and q� When this is




nished for all �� individuals� the individuals are ranked
in descending order of the rank values wj and the � in�
dividuals having highest ranks wj are selected to form
the next population� Using a more formal notation� rank
values wj are obtained as follows�

wj �

qX
i��

�
IR
�
�
�F�xui
� F�xj

 � ��


ui denotes a uniform integer random variable on the
range of indices f�� � � � � ��g which is sampled anew for
each comparison� the indicator function �A�x
 is one if
x � A and zero otherwise� and IR�

� � fx � IR j x � �g�
Intuitively� the selection mechanism implements a kind
of probabilistic ����
�selection which becomes more and
more �deterministic� as the external parameter q is in�
creased� i�e� the probability that the selected set of indi�
viduals is the same as in a ����
�selection scheme tends
to unity as q increases� The selection scheme guarantees
survival of the best individual� since this is assigned a
guaranteed maximum 
tness score of q�
In general� the standard EP algorithm imposes some

parameter tuning di�culties to the user concerning the
problem of 
nding useful values for 
i and �i in case
of arbitrary� high�dimensional objective functions� To
overcome these di�culties� D� B� Fogel developed an
extension called meta�EP that self�adapts n variances
c�� � � � � cn per individual quite similar to ESs �see ����
p� ���
� Then� mutation m�a
 � a� applied to an in�
dividual a � �x� c
 produces a� � �x�� c�
 according to
��i � f�� � � � � ng
�

x�i � xi �
p
ci � z � xi � �i � z

c�i � ci �
p
�ci � z � ��i �

p
��i � z �

��


where the second identities hold because of ci � ��i � and
� denotes an exogenous parameter� To prevent vari�
ances from becoming negative� Fogel proposes to set
c�i �� �c � � whenever by means of the modi
cation
rule ��
 negative variances would occur� However� while
the log�normally distributed alterations of standard de�
viations in ESs automatically guarantee positivity of �i�
the mechanism used in meta�EP is expected to cause
variances set to �c rather often� thus essentially leading
to a reduction of the dimension of the search space when
�c is small� It is surely interesting to perform an ex�
perimental investigation on strengths and weaknesses of
both self�adaptation mechanisms�
In addition to standard deviations� the Rmeta�EP al�

gorithm as proposed by D� B� Fogel �see ���� pp� �������

also incorporates the complete vector of n � �n � �
��
correlation coe�cients �ij � cij�

p
�i�j � ���� �� �i �

f�� � � � � n��g� j � fi��� � � � � ng
� representing the covari�
ance matrix A��� into the genotype for self�adaptation

quite similar to correlated mutations in ESs� This algo�
rithm� however� was implemented and tested by Fogel
only for n � �� and currently the extension to n � � is
not obvious since positive de
niteness and symmetry of
Amust be guaranteed on the one hand while on the other
hand it is necessary to 
nd an implementation capable
of producing any valid correlation matrix� For corre�
lated mutations in ESs� the feasibility of the correlation
procedure has recently been shown by Rudolph �����

� Theoretical Properties of Evo�

lution Strategies

��� Problem statement and method for�
mulation

Before summarizing convergence results of ES�type op�
timization methods some basic de
nitions and assump�
tions are to be made�

Definition �
An optimization problem of the form

f� �� f�x�
 �� minff�x
jx �M � IRng ���


is called a regular global optimization problem i	

�A�
 f� � ���
�A�
 x� � int�M 
 
� � and
�A�
 ��Lf���
 � �

Here� f is called the objective function� M the feasible
region� f� the global minimum� x� the global minimizer
or solution and La �� fx �M j f�x
 � ag the lower level
set of f � �

The 
rst assumption makes the problem meaningful
whereas the second assumption is made to facilitate
the analysis� The last assumption skips those problems
where optimization is a hopeless task �see ���� p� ��
�
Furthermore� let us rewrite the ES�type algorithm given
in a previous section in a more compact form�

Xt�� � Yt�� � �Lf�xt�
�Yt��
 � xt � �Lc

f�xt�
�Yt��
 � ���


where the indicator function �A�x
 is one if x � A and
zero otherwise and where Yt�� is a random vector with
some probability density pYt���y
 � pZt

�y�xt
� Usually
pZ is chosen as a spherical or elliptical distribution�

Definition �
A random vector z of dimension n is said to pos�
sess an elliptical distribution i	 it has stochastic rep�

resentation z
d
� r Q� u� where random vector u is uni�

formly distributed on a hypersphere surface of dimen�
sion n stochastically independent to a nonnegative ran�
dom variable r and where matrix Q � k � n with



rank�Q�Q
 � k� If Q � n � n and Q � I then z is
said to possess a spherical �symmetric� distribution� �

From the above de
nition it is easy to see that an ES�
type algorithm using a spherical or elliptical distribution
is equivalent to a random direction method with some
step size distribution� In fact� if z is multinormally dis�
tributed with zero mean and covariance matrixC � ��I�
then the step size r has a �n��
�distribution �see Fang
et al� ��� for more details
� If matrix Q and the variance
of r are 
xed during the optimization we shall say that
algorithm ���
 has a stationary step size distribution�
otherwise the distribution is called adapted�

��� Global convergence property

The proof of global convergence has been given by sev�
eral authors independently� Although the conditions are
slightly di	erent among the papers each proof is based
on the so�called Borel�Cantelli Lemma which applica�
tion makes a convergence proof for an elitist GA trivial�

Theorem � �����������������������

Let pt �� PfXt � Lf���g be the probability to hit the
level set Lf���� � � �� at step t� If

�X
t��

pt �� ���


then f�Xt
 � f� � � a�s� for t�� or equivalently

Pf lim
t��

�f�Xt
� f�
 � �g � �

for any starting point x� �M � �

Lemma �
Let C be the support of stationary pZ � Then holds�
M � C and M bounded � La bounded � a � f�x�
�
pt � pmin � � for all t � �� lim inf

t��
pt � �� ���
 �

Of course� theorem � is only of academic interest because
we have no unlimited time to wait� However� if condi�
tion ���
 is not ful
lled then one may conclude that the
probability to obtain the global minimum for any start�
ing point x� �M with increasing t is zero as pointed out
by Pinter �����

��� Convergence rates

The attempt to determine the convergence rate of algo�
rithms of type ���
 was initiated by Rastrigin ���� and
continued by Schumer and Steiglitz ���� and Rechenberg
����� Each of them calculated the expected progress
w�r�t� the objective value or distance to the minimizer
of special convex functions� Since the latter measure is
not well�de
ned in general we shall use the following
de
nition�

Definition �
The value �t �� E�f�Xt
� f�� is said to be the expected
error at step t� An algorithm has a sublinear convergence
rate i	 �t � O�t�b
 with b � ��� �� and a geometrical
convergence rate� i	 �t � O�rt
 with r � ��� �
� �

Whereas the proof of global convergence can be given
for a broad class of problems the situation changes for
proofs concerning convergence rates� Seemingly� the only
chance is to restrict the analysis to a smaller class of
problems that possesses some special properties� This
has been done by Rappl and it generalizes the results on
convex problems mentioned above�

Theorem � ���������

Let f be a �l� Q
�strongly convex function� i�e� f is con�
tinuously di	erentiable and with l � �� Q � � there holds
for all x� y � M

l jjx� yjj� � �rf�x
 �rf�y

��x� y
 � Ql jjx� yjj�

and Z
d
� RU � where R has nonvoid support ��� a
 � IR�

Then the expected error of algorithm ���
 decreases for
any starting point x� �M with the following rates�

E�f�Xt
� f�� �
	

O�t���n
 � pZ stationary
O�
t
 � pZ adapted

with 
 � ��� �
� �

In order to adapt the step sizes one may choose Rt�� �
jjrf�xt
jjR� Moreover� Rappl ���� p� �������� has
shown that the step size can be adapted via a suc�
cess failure control similar to the proposal of ����� The
idea is to decrease the step size with a factor �� � ��� �

if there was a failure and to increase the step size by a
factor �� � � if there was a success� Then geometrical
convergence follows for �� �� � ��
It should be noted that even with geometrical conver�

gence the expected number of steps to achieve a certain
accuracy may di	er immensely� e�g� consider the number
of steps needed if 
 � ��� or if 
 � �������� Therefore�
the search for optimal step size schedules should not be
neglected�

Example �

Let f�x
 � jjxjj� with M � IRn be the problem� Clearly�
f is ��� �
�strongly convex�

�rf�x
 �rf�y

��x� y
 � � jjx� yjj� �

The mutation vector z in algorithm ���
 is chosen to
be multinormally distributed with zero mean and co�
variance matrix C � �� I� Consequently� for the
distribution of the objective function values we have
f�xt�Zt
 � ����n��
� where �

�
n��
 denotes a noncentral



���distribution with n degrees of freedom and noncen�
trality parameter � � jjxtjj����� Using the fact that ����
p� ����

��n��
� �n� �
p
��n� ��


� N � N ��� �


for n � � the limiting distribution of the normalized
variation of objective function values V becomes

V ��
f�xt
� f�Xt��


f�xt


� �� ��

jjxt jj�
��n��


� �� ��

jjxtjj�
�n � ��

p
�n� ��N 


� �s�

n
� s�

n

r
�

n
�

�

s�
N

� �s�

n
� �s

n
N

with � � s jjxt jj�n� Since algorithm ���
 accepts only
improvements� we are interested in the expectation of
the random variable V � � maxf�� V g�

E�V �� �

�Z
�

nu

�s
p
�


exp



��

�

�
nu� s�

�s

���
du

�
�

n

�
s

r
�



exp

�
�s�

�

�
� s�

h
�� !


s
�

�i�

where !��
 denotes the c�d�f� of a unit normal random
variable� The expectation becomes maximal for s� �
����� �see 
g� �
 such that E�V �� � ������n and

�� �
�����

n
jjxjj ���


�
�����

n

p
f�x
 ���


�
�����

n
jjrf�x
jj � ���


where ���
 is the value also given by Rechenberg ����
which is converted to ���
 and ���
 in the notation of
Fogel ��� and Rappl ����� respectively� Obviously� if we

modify f to fa�x
 � jjxjj� � � then control ���
 will fail
to provide geometrical convergence� One has to subtract
some constant from ���
 which depends on the value
of the �unknown
 global minimum� Similarly� optimiz�

ing fb�x
 � jjx� �jj� control ���
 will fail whereas con�
trol ���
 will succeed in all cases due to its invariance
w�r�t� the location of the unknown global minimizer and
the value of the unknown global minimum� In addition�
the dependence on the problem dimension n is of impor�
tance� Omitting this factor geometrical convergence can

still be guaranteed but it will be very slow compared to
the optimal setting �see 
g� �
� �

Figure �� Normalized expected improvement nE�V �� versus

normalized standard deviation s � n��f�xt�
���

��� �� � ���Evolution Strategies

Obviously� theorems � and � can be applied to this type
of algorithms� However� as pointed out by Schwefel
�������� there are some di	erences concerning the con�
vergence rates� The larger the number of o	spring 	 the
better the convergence rate� We shall discuss the re�
lationship in the next subsection� Wardi ���� proposed
a �� � 	
�ES where 	 is a random variable depending
on the amount of improvement� i�e� new o	spring are
generated as long as the improvement is below a certain
decreasing limit which is used to adjust the step sizes as
well�

��� ��� ���Evolution Strategies

For this type of algorithms theorem � cannot be applied�
Although it is possible to show that the level set Lf���
will be hit with some probability there is no guarantee of
convergence� For example� a ��� �
�ES is simply a ran�
dom walk� A possible way to avoid nonconvergence may
be achieved by restricting the probability of accepting
a worse point� In fact� if this probability is decreasing
with a certain rate over time global convergence can be
assured under some conditions �see Haario and Saksman
����
� With this additional feature a ��� 	
�ES �without
recombination
 is equivalent to special variants of so�
called Simulated Annealing algorithms that are designed
for optimizing in IRn� This relationship is investigated
in Rudolph �preprint ��
�



Despite the lack of a theoretical guarantee of global
convergence it is possible to calculate the convergence
rates for some special problems� This has been done by
Schwefel �������� and Scheel ���� for the same problem as
in the previous example using a ��� 	
�ES�

Example �
Similarly to example � for large n the optimal setting of
� can be calculated
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The value of c��� has been tabularized in ����� How�
ever� a closer look at ���
 reveals that this expression is
equivalent with the expected value of the maximum of 	
i�i�d� unit normal random variables�
Let Xi � N ��� �
 for i � �� � � � � 	� Then M� ��

maxfX�� � � � � X�g is a random variable with c�d�f�
PfM� � xg � F��x
 � !��x
� Consequently� c��� �
E�M��� According to Resnick ���� pp� ������ we have�

PfM� � a�x� b�g � F��a�x� b�
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for 	�� with
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Let Y have c�d�f� G�x
� then

M� � b�
a�

	 Y �M� 	 a�Y � b�

and due to the linearity of the expectation operator

E�M�� 	 a�E�Y � � b� � a�� � b�
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where � � ������� � � � denotes Euler�s constant� Now
it is possible to derive an asymptotic expression for the
speedup assuming that the evaluation of 	 trial points
are performed in parallel� Let E�t�� and E�t�� denote the
expected number of steps to achieve a given accuracy �
for a �� � 	
�ES and ��� 	
�ES� respectively� Then for

the expected speedup holds

E�S�� �
E�t��

E�t��

�
log�����


log��� ������n

� log�� � c�����n


log�����


	 log��� � log�	
�n


log�� � ������n


� � log�	
�n

������n

� O�log	
 �

Thus� the speedup is only logarithmic� It can be shown
that this asymptotic bound cannot be improved by a
�� � 	
�ES� �

��	 Open questions

Theorem � provides convergence rate results and step
size adjustment rules for strongly convex problems�
Rappl ���� has shown that the conditions of theorem �
can be weaken such that the objective function is re�
quired to be only almost everywhere di	erentiable and
that the level sets possess a �bounded asphericity�� es�
pecially close to the minimizer�

The algorithm of Patel et al� ���� called pure adap�
tive search requires only convexity to assure geometrical
convergence� However� this algorithm uses a uniform
distribution over the lower level sets for sampling a new
point� Naturally� this distribution is unknown in gen�
eral� Recently Zabinsky and Smith ���� have given the
impressive result that this algorithm converges geometri�
cally even for lipshitz�continuous functions with several
local minima� This rises hope to design an Evolutionary
Algorithm that converges to the global optimum of cer�
tain nonconvex problem classes with a reasonable rate�

Obviously� convergence rates are closely connected to
the adaptation of the sampling distribution� Incorpo�
rating distribution parameters within the evolutionary
process may be a possible solution� This technique can
be subsumed under the term self	adaptation� First at�
tempts to analyse this technique have been done by Vo�
gelsang �����

In this context recombination may play an important
role because it can be seen as an operation that connects
the more or less local mutation distributions of single in�
dividuals to a more global mutation distribution of the
whole population� However� nothing is known theoreti�
cally about recombination up to now�



� Experimental Comparison

Just to achieve a 
rst assessment of the behaviour of
both algorithms� experiments were run on the sphere
model f��x
 � kxk� and the generalized variant of a
multimodal function by Ackley �see ���� pp� �����
�

f��x
 � ��� � exp
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�����
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test functions that represent the class of strictly convex�
unimodal as well as highly multimodal topologies� re�
spectively� The global optimum of f� is located at the
origin with a function value of zero� Three�dimensional
topology plots of both functions are presented in 
gure ��
A comparison was performed for a moderate dimen�

sion n � �� and ����� � xi � ���� de
ning the feasible
region for initialization� The parameterizations of both
algorithms were set as follows�

� Evolution Strategy� �������
�ES with self�adap�
tation of �� standard deviations� no correlated mu�
tations� discrete recombination on object variables
and global intermediate recombination on standard
deviations�

� Evolutionary Programming� Meta�EP with self�
adaptation of �� variances� population size � � ����
tournament size q � �� for selection� � � � �see ����
p� ���
�

All results were obtained by running ten independent
experiments per algorithm and averaging the resulting
data� and ����� functions evaluations were performed
for each run on the sphere model in contrast to ������
function evaluations on Ackley�s function� The resulting
curves of the actually best objective function value plot�
ted over the number of function evaluations are shown
in 
gure ��
The clear di	erence of convergence velocity on f� indi�

cates that the combination of relatively strong selective
pressure� recombination� and self�adaptation as used in
ESs is helpful on that topology �performance of the ES
can still be improved by reducing the amount of strat�
egy parameters to just one standard deviation
� Con�
vergence reliability on Ackley�s function turns out to be
rather good� since both strategies locate the global opti�
mum in each of the ten runs with average 
nal best ob�
jective function values of ���� ����� �EP
 and ���� �����
�ES
� respectively� This behaviour is due to the addi�
tional degree of freedom provided by self�adaptation of
n � �� strategy parameters�

� Conclusions

As it turned out in the preceding sections� Evolution�
ary Programming and Evolution Strategies share many
common features� i�e� the real�valued representation of
search points� emphasis on the utilization of normally
distributed random mutations as main search operator�
and� most importantly� the concept of self�adaptation
of strategy parameters on�line during the search� There
are� however� some striking di	erences� most notably the
missing recombination operator in EP and the softer�
probabilistic selection mechanism used in EP� The com�
bination of these properties seems to have some negative
impact on the performance of EP� as indicated by the
experimental results presented in section ��
Further investigations of the role of selection and

recombination as well as the di	erent self�adaptation
methods are surely worthwhile� just as a further exten�
sion of theoretical investigations of these algorithms� As
demonstrated in section �� some theory available from
research on Evolution Strategies can well be transferred
to Evolutionary Programming and is helpful for assess�
ing strengths and weaknesses of the latter approach�
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