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Abstract- It is shown that the stochastic dynamics of
non-generational evolutionary algorithms with binary
tournament selection and gene pool recombination but
without mutation is closely approximated by a stochas-
tic process consisting of several de-coupled random
walks, provided the fitness function is separable in a
certain sense. This approach leads to a lower bound
on the population size such that the evolutionary algo-
rithm converges to a uniform population with globally
optimal individuals for a given confidence level.

1 Introduction

Evolutionary algorithms (EAs) with finite search sets can
be exactly modeled by means of finite state Markov chains.
Although the derivation of the transition matrices does not
pose an essential problem, it is rarely possible to obtain
analytical expressions for the state distribution, limit dis-
tribution, absorption or first passage times et cetera, since
the required symbolic mathematical operations with these
matrices quickly become intractably complex. Exceptional
cases require more or less strong assumptions regarding the
population size, the participating evolutionary operators,
and the problem under consideration. Those assumptions
usually reduce the state space and therefore the size of the
transition matrices considerably and/or turn the transition
matrix into a sparse matrix with special properties. This
is a common approach in the analysis of randomized algo-
rithms [1]. In case of evolutionary algorithms this method
led to upper bounds of the expected absorption time for
simple EAs (single parent, only mutation and selection)
and selected problem classes [2, 3, 4]. Further results on
simple EAs can be found in [5, 6] and the references therein.
First analyses of population-based EAs with crossover and
mutation were presented in [7, 8].
The presence of mutation is an essential ingredience in the
theoretical work mentioned so far. The idea of how to ap-
proach population-based EAs with recombination and se-
lection but without mutation was introduced in [9]. It was
(somewhat vaguely) argued that the dynamics of such EAs
resemble the dynamics of a specific random walk. Here, we
seize this suggestion again with the objective of underpin-
ning this approach with a sound theoretical argumentation

for the class of separable fitness functions and the class of
non-generational evolutionary algorithms with binary tour-
nament selection and gene pool recombination.
For this purpose, we first present a brief introduction to
random walks in Section 2 before entering the theoretical
analysis given in Section 3. Some auxiliary results and their
proofs are deferred to the appendix in order to exempt the
argumentation from technical details. Our concluding re-
marks are given in Section 4.

2 Random Walks with Absorbing Barriers

The basic definitions and results of this section are extracted
from [10, p. 344f.]. Let the set{0, 1, . . . , n} with n < ∞
denote the set of states that may be visited by some stochas-
tic process. Letp+

i be the probability of a transition from
statei to statei + 1, p−i be the probability of a transition
from statei to statei−1, andp0

i be the probability of a tran-
sition from statei to statei. If p−i > 0, p0

i ≥ 0, andp+
i > 0

such thatp−i + p0
i + p+

i = 1 for i = 1, . . . , n − 1 while
p−i = p+

i = 0 andp0
i = 1 for i ∈ {0, n} then the stochas-

tic process with state space{0, 1, . . . , n} is called aran-
dom walk with absorbing barriers. The states0 andn are
termed absorbing whereas the remaining ones are termed
transient.
Let ai0 and ain denote the probabilities that the random
walk will be absorbed by state0 resp.n provided it was
started at statei. In general, the relationshipain = 1− ai0

is valid for alli = 0, 1, . . . , n. If the transition probabilities
are independent from the states, i.e.,p−i = p−, p0

i = p0 and
p+

i = p+ for all i = 1, . . . , n− 1, then

ain =


1− ωi

1− ωn
if ω 6= 1

i

n
if ω = 1

(1)

whereω = p−/p+. Evidently, the absorption probabilities
are not affected by the value ofp0. This observation leads
to the result shown next.
Lemma 1
Let p−i > 0, p0

i > 0, andp+
i > 0 with p−i + p0

i + p+
i = 1

be the transition probabilities of a random walk with ab-
sorbing states0 andn. If the quotients̃p− = p−i /(1− p0

i )



andp̃+ = p+
i /(1−p0

i ) are independent from indexi for all
i ∈ {1, . . . , n − 1} then the absorption probability to state
n is given by Eqn. (1) whereω = p̃−/p̃+.

Proof: Assume that the random walk has just entered some
transient statei. If p0

i > 0 for the transient states of the ran-
dom walk, then the random walk stays on average1/(1 −
p0

i ) time units at statei prior to a transition either to state
i − 1 or to statei + 1. As long as the random walk stays
at statei the probabilities of a transition to the left or right
remain unaltered for each step. Since we are only inter-
ested in the absorption probabilities (and not in the number
of steps until absorption takes place) we may skip the pe-
riod of staying at statei, provided that the transition prob-
abilities are appropriately adjusted. Notice that the prob-
ability of finally moving to statei + 1 conditioned by the
event that statei has been left is̃p+

i = p+
i /(1 − p0

i ), and
p̃−i = p−i /(1 − p0

i ) in case of a transition to statei − 1.
Since p̃+

i + p̃−i = 1 and p̃0
i = 0 for the transient states

i, the originally aperiodic random walk has been converted
to a periodic random walk possessing the same absorption
probabilities but a smaller absorption time. Now insist that
p̃+

i is identical for all transient statesi. Under this addi-
tional assumption we may use Eqn. (1) in order to calculate
the absorption probabilities of the new random walk. Since
these absorption probabilities are identical to those of the
original random walk the proof is completed. ut

3 Evolutionary Algorithms as Random Walks

3.1 Assumptions and Goals

Let x ∈ Sd be an element of thed–dimensional search
spaceSd whereS is a non-empty finite set with cardinality
c. The objective functionf : Sd → R is representable via

f(x) =
d∑

i=1

g(xi)

whereg : S → R is a real-valued function. Without loss
of generality it is assumed thatf(·) is to be maximized.
The evolutionary algorithm under consideration is charac-
terized as follows:

(A1) Finite population sizen < ∞.

(A2) Non-generational binary tournament selection.

(A3) Gene-pool recombination.

(A4) No mutation.

It is clear that an evolutionary algorithm with recombina-
tion and selection but without mutation will necessarily
converge to a uniform population (i.e., all individuals are
identical) with probability one in finite time [11]. Notice

that each of thecn uniform populations may be attained
with some non-zero probability provided that the initial
population is drawn at random. In [9] it was measured how
many subfunctionsg(·) have attained their global optimum
as soon as the population has become uniform, or equiv-
alently, how many correct building blocks have been col-
lected by an individual of a uniform population. We show
that this measure indeed depends on the absorption prob-
ability of a single specific random walk. Moreover, this
quantity also can be used to obtain lower bounds on or at
least a good approximation of the probability that the uni-
form population finally attained consists of globally opti-
mal individuals. A rearrangement of the resulting inequal-
ity yields a bound for the population size required to obtain
a globally optimal uniform population for a given confi-
dence level.

3.2 Representation of the Evolutionary Algorithm

Regardless of the choice of the selection and variation op-
erators, the population of an evolutionary algorithm may be
represented by the matrix

A =


a11 a12 · · · a1d

a21 a22 · · · a2d

...
...

...
an1 an2 · · · and


where the row vectorai• = (ai1 ai2 . . . aid) ∈ Sd repre-
sents theith individual (i = 1, . . . , n) whereas the column
vectora•j = (a1j a2j . . . anj)′ represents thegene poolof
componentj = 1, . . . , d.
In a usual evolutionary algorithm withgene pool recom-
bination an offspringb would be assembled by choosing
a gene at random with uniform probability1/n from each
gene pool. Equivalently, this might be also achieved as fol-
lows: Calculate the relative frequencieshj(s) of elements
s ∈ S in each gene poolj = 1, . . . , d. An offspringb is as-
sembled by drawing componentbj from the discrete prob-
ability distribution withP{ bj = s } = hj(s) for s ∈ S.
Thus, the population is now equivalently represented by
the probability distributionsh1(·), . . . , hd(·) which might
be gathered in ad× c matrix (actually, ad× (c− 1) matrix
would suffice since the probabilities must add to unity).
Since the binary tournament selection method is used in a
non–generational manner the update rule for the probabil-
ity distributionshj(·) is very simple. LetX andY be two
offspring independently drawn via gene pool recombina-
tion from the probability distributionshj(·). The new prob-
ability distributionsh′j(·) for j = 1, . . . , d are obtained by
h′j(Xj) = hj(Xj) + ∆j/n andh′j(Yj) = hj(Yj)−∆j/n



where

∆j =

 1 if Xj 6= Yj ∧ f(X) ≥ f(Y )
0 if Xj = Yj

−1 if Xj 6= Yj ∧ f(X) < f(Y ) .

Thus, the frequencies of the alleles of the winner are in-
creased whereas those of the looser are decreased for each
gene pool. This formulation of the evolutionary algorithm
does not facilitate the analysisper se. The update proba-
bility of each gene pool is of course still dependent on the
frequency distributions of the other gene pools. But the
point of view developed so far opens the door to a simpler
yet not exact analysis that leads to surprising accurate re-
sults under certain circumstances. A demonstration of this
fact is given in the next subsection before proceeding with
the general case in the subsequent subsection.

3.3 The Random Walk Model: Instructive Example

Let S = {0, 1}, d ≥ 1 andg(s) = a s + b wherea 6= 0
andb ∈ R. Since binary tournament selection is an ordinal
selection method it suffices to consider the case(a, b) =
(1, 0). The maximization of the resulting objective function

f(x) =
d∑

i=1

xi

is also known as the “counting ones problem.” Since the
cardinality ofS is c = |S| = 2 the population is repre-
sentable by a single vectorp = (p1, . . . , pd) wherepj =
hj(1) and1 − pj = hj(0) for j = 1, . . . , d. Let X andY
be the two offspring generated by gene pool recombination.
The update rule reduces to

p′ = p +
γ

n
(X − Y )

where

γ =
{

1 if f(X) ≥ f(Y ),
−1 otherwise.

Let p+
k be the probability that gene poolk will be increased

1/n, p−k the probability that it will be decreased by1/n and
p0

k the probability that it remains unaltered. These proba-
bilities are given by

p0
k = P{Xk = 1, Yk = 1 }+ P{Xk = 0, Yk = 0 }

= P{Xk = 1 } · P{Yk = 1 }+
P{Xk = 0 } · P{Yk = 0 }

= p2
k + (1− pk)2

= 1− 2 pk (1− pk), (2)

p+
k = P{Xk = 1, Yk = 0, f(X) ≥ f(Y ) }+

P{Xk = 0, Yk = 1, f(X) < f(Y ) }
= P{Xk = 1, Yk = 0, Dd,k ≥ −1 }+

P{Xk = 0, Yk = 1, Dd,k < 1 }
= P{Xk = 1 } · P{Yk = 0 } · P{Dd,k ≥ −1 }+

P{Xk = 0 } · P{Yk = 1 } · P{Dd,k < 1 }
= pk (1− pk) [ P{Dd,k ≥ −1 }+ P{Dd,k < 1 } ]
= 2 pk (1− pk) αd,k (3)

p−k = 1− p0
k − p+

k

= pk (1− pk) [ 2− (P{Dd,k ≥ −1 }+
P{Dd,k < 1 }) ]

= 2 pk (1− pk) (1− αd,k). (4)

where

Dd,k =
d∑

i=1
i 6=k

(Xi − Yi)

andαd,k = (P{Dd,k ≥ −1 }+ P{Dd,k < 1 })/2.
Suppose there exists anα such thatαk,d ≥ α > 0 for all
k = 1, . . . , d. In this case one obtainsp+

k ≥ 2 pk (1−pk) α
andp−k ≤ 2 pk (1 − pk) (1 − α) for everygene poolk =
1, . . . , d regardless of the true state of the other gene pools.
As a consequence, the entire stochastic process over thed
nonlinearly coupled gene pools may be seen asd indepen-
dentrandom walks. Notice that the transition probabilities
p0

k, p+
k , andp−k are state–dependent even if we useα and

regard the inequalities as equalities. But Lemma 1 offers a
remedy: Since

p̃+
k =

p+
k

1− p0
k

= αd,k ≥ α

p̃−k =
p−k

1− p0
k

= 1− αd,k ≤ 1− α

the absorption probabilities of the state–dependent random
walk are identical to those of the associated simple ran-
dom walk without state–dependent transition probabilities.
Consequently,ω ≤ ω̃ = (1−α)/α < 1 if α > 1/2. In this
case Lemma 2 ensures that the probability of absorption at
staten is lower bounded by

ain ≥
1− ω̃i

1− ω̃n
.

Let B∗ be the random variable representing the number of
independent random walks starting at statei and finally be-
ing absorbed at staten. Evidently,B∗ is the sum ofd inde-
pendent Bernoulli random variables with success probabil-



ity ain. Therefore the expectation ofB∗ is given by

E[B∗ ] = d ain ≥ d · 1− ω̃i

1− ω̃n

= d αn−i · αi − (1− α)i

αn − (1− α)n
. (5)

Notice that random variableB∗ represents the number of
optimized subfunctionsg(·) within a converged population,
or equivalently, the number of correctly compiled building
blocks. The bound on the expectation ofB∗ only depends
on the absorption probabilityain of a specific random walk
and the numberd of random walks executed in parallel.
This partially explains the close match between the theoret-
ical considerations and numerical experiments presented in
[9].
Needless to say, it remains to guarantee that such anα >
1/2 actually exists. Lemma 4 in conjunction with Lemma
5 yields the tight lower bound

α =
1
2

+
1
2

(
2 d− 1

d

)
4−(d−1) =

1
2

+
(

2 d

d

)
4−d (6)

revealing thatα > 1/2 as required. Since Stirlings’s for-
mula (see entry 6.1.38 in [12]) leads to

exp
(
− 1

6 d

)
<

(
2 d

d

)
4−d (d π)1/2 < exp

(
1

24 d

)
equation (6) may be replaced by the more convenient but
remarkably accurate bound

α >
1
2

+ exp
(
− 1

6 d

)
(π d)−1/2 ∼ 1

2
+

1√
π d

. (7)

If the evolutionary algorithm is initialized uniformly at ran-
dom then the initial state of each random walk isi = bn/2c.
As a consequence, we obtain

an/2,n =
1

1 + ω̃n/2
.

If each random walk is absorbed in staten then the popu-
lation converges to a uniform population with optimal in-
dividuals. The probability of this event is at least

ad
n/2,n ≥

(
1

1 + ω̃n/2

)d

≥ β

whereβ ∈ (0, 1) is the desired minimum probability of
convergence to the optimal uniform population. Elemen-
tary transformations of the rightmost inequality above lead
to

n ≥ 2 log
(

1− β1/d

β1/d

)/
log
(

1− α

α

)
.

Sinceα depends on the dimensiond it is possible to de-
velop an asymptotic expression for the population sizen.
Taking into account equation (7) we obtain

log
(

1− α

α

)
∼ log

(
1− 2/

√
π d

1 + 2/
√

π d

)
∼ − 4

(π d)1/2

whereas

log
(

1− β1/d

β1/d

)
= − log d + log log β−1 + O(d−1)

for larged. Thus, if the dimensiond of the problem in-
creases the population size should be set to

n =

√
π d

2
(log d− log log β−1) + O(d−1/2)

in order to guarantee that the EA will converge to the opti-
mal population at least with probabilityβ > 0.

3.4 The Random Walk Model: General Case

Let |S| = c ≥ 2 andV = {g(x) : x ∈ S} = {v1, . . . , vm}
with 2 ≤ m ≤ c be the set of values attainable by means
of the subfunctiong(·). Again, the random vectorsX and
Y denote individuals that are independently generated via
gene pool recombination. Here, random variableDd,k is
defined as

Dd,k =
d∑

i=1
i 6=k

(g(Xi)− g(Yi)).

Let p+
k denote the probability that the relative frequency

of the best building blocks∗ ∈ S with g(s∗) = vm of
gene poolk is increased by1/n. This probability can be
bounded by

p+
k = P{ g(Xk) = vm, g(Yk) 6= vm, f(X) ≥ f(Y ) }+

P{ g(Xk) 6= vm, g(Yk) = vm, f(X) < f(Y ) }

=
m−1∑
i=1

P{ g(Xk) = vm, g(Yk) = vi, f(X) ≥ f(Y ) }+

m−1∑
i=1

P{ g(Xk) = vi, g(Yk) = vm, f(X) < f(Y ) }



=
m−1∑
i=1

P{ g(Xk) = vm } × P{ g(Yk) = vi }

×P{Dd,k ≥ vi − vm }+
m−1∑
i=1

P{ g(Xk) = vi } × P{ g(Yk) = vm }

×P{Dd,k < vm − vi }

≥
m−1∑
i=1

P{ g(Xk) = vm } × P{ g(Yk) = vi }

×P{Dd,k ≥ vm−1 − vm }+
m−1∑
i=1

P{ g(Xk) = vi } × P{ g(Yk) = vm }

×P{Dd,k < vm − vm−1 }
= P{ g(Xk) = vm } × (1− P{ g(Yk) = vm })

×P{Dd,k ≥ −δ }+
P{ g(Yk) = vm } × (1− P{ g(Xk) = vm })

×P{Dd,k < δ }
= pk (1− pk) (P{Dd,k ≥ −δ }+ P{Dd,k < δ })
= 2 pk (1− pk) αd,k (8)

whereδ = vm − vm−1 > 0 is the smallest difference be-
tween the maximum and any other value of the subfunction
g(·), αd,k = (P{Dd,k ≥ −δ } + P{Dd,k < δ })/2, and
pk = P{ g(Xk) = vm } = P{ g(Yk) = vm } is the proba-
bility of drawing the optimal building block, i.e.,pk is the
relative frequency of optimal building blocks in gene pool
k. Analogously, we obtain

p−k ≤ 2 pk (1− pk) (1− αd,k) (9)

and

p0
k =

m∑
i=1

P{ g(Xk) = vi }2 > 0 .

In principle, we consider all non-optimal building blocks
as being equally bad (no distinction) and assume the worst
case regarding the signal differences, i.e., the smallest value
of vm − vi wherei 6= m. As a consequence, we only dis-
tinguish between optimal and non-optimal building blocks
whose associated subfunction values arevm resp.vm−1. In
other words, we have reduced the general case to the ran-
dom walk model of the preceding subsection, provided we
are able to find anα such thatαd,k ≥ α > 1/2 for all
k = 1, . . . , d. The problem of finding tight bounds forα
in the general case seems intractable. But it is easy to de-
velop asymptotic expressions via a version of the central
limit theorem.

Theorem 1 ([10], pp. 253–255)
Let (Zi)∞i=1 be a sequence of independent random variables

which need not be identically distributed and set

ad =
d∑

i=1

E[Zi ], b2
d =

d∑
i=1

V[Zi ], and Sd =
d∑

i=1

Zi .

If |Zi| ≤ C < ∞ for all i ≥ 1 andbd/d = o(1) then the
random variable(Sd − ad)/bd converges in distribution to
a standard normal random variable asd →∞. ut

Proposition 1
Let {X̃i : i = 1, . . . , d} and{Ỹi : i = 1, . . . , d} be two
collections of discrete, mutually independent random vari-
ables with identical finite support{v1, . . . , vm}. If the dis-
tributions ofX̃i andỸi are identical fori = 1, . . . , d then

P

{
d∑

i=1

(X̃i − Ỹi) ≤ z

}
≈ Φ

(
z

σd

)

≥ Φ

(
z

vm − v1

√
2
d

)

whereσ2
d =

d∑
i=1

V[ X̃i − Ỹi ] andΦ(·) is the distribution

function of the standard normal distribution.
Proof: At first it is verified that the preconditions of The-
orem 1 are fulfilled. LetDi = X̃i − Ỹi for i = 1, . . . , d.
Since|Di| ≤ C := vm − v1 < ∞ the first condition is
verified. As for the second condition, notice that neither
the variance ofX̃i nor the variance of̃Yi can exceed the
valueη2

max = (vm − v1)2/4 for all i = 1, . . . , d. Since all
random variables are mutually independent one obtains

σ2
d =

d∑
i=1

V[Di ] =
d∑

i=1

V[ X̃i − Ỹi ] = 2
d∑

i=1

V[ X̃i ]

≤ 2 d η2
max =

d (vm − v1)2

2
. (10)

Using this inequality it immediately follows that0 ≤ σd/d ≤
C/(2 d)1/2 → 0 asd → ∞. Thus, the second precondi-
tion of Theorem 1 is also fulfilled. As a consequence, the
true probability distribution of the sum of differences may
be approximated by a normal distribution. Finally, the in-
equality given in the proposition follows from inequality
(10) and the fact thatΦ(·) is a distribution function of a
continuous random variable. ut
With X̃i = g(Xi) andỸi = g(Yi) we may use Proposition
1 to obtain

αd,k =
P{Dd,k ≥ −δ }+ P{Dd,k < δ }

2

≈ Φ
(

δ

σd−1

)
≥ Φ

(
vm − vm−1

vm − v1

√
2

d− 1

)
= α >

1
2

.



A Taylor expansion ofΦ(x) atx = 0 leads to the approxi-
mation

α ≈ 1
2

+
vm − vm−1

vm − v1

√
1

π (d− 1)
(11)

which is in a noteworthy accordance with the bound (7) of
the preceding example wherevm = 1 andvm−1 = v1 = 0.
To proceed we have to calculate the new transition proba-
bilities of the modified random walk. Taking into account
inequalities (8) and (9) we obtain

p̃+
k =

p+
k

1− p0
k

=
p+

k

p+
k + p−k

=
(

1 +
p−k
p+

k

)−1

≥
(

1 +
pk (1− pk) (1− αd,k)

pk (1− pk)αd,k

)−1

= αd,k ≥ α

and analogouslỹp−k ≤ 1 − α. Thus,ω̃ = (1 − α)/α < 1
and hence

ain ≥
1− ω̃i

1− ω̃n
> 1− ω̃i (12)

wherei denotes the initial state of the random walk for each
gene pool. Suppose that|S| = c = 2r with r ∈ N and
that the optimal building block is unique. In this case the
elements of the original search setSd may be encoded by
binary strings of length̀ = d · r. If the population of bit
strings is initialized uniformly at random then there are on
averagen/c = n·2−r optimal building blocks in each gene
pool. As a consequence, the initial state of each random
walk is i = bn · 2−rc.
Now we are in the position to determine a bound for the
minimum population size such that the population converges
to the optimal uniform population. Owing to (12) the prob-
ability of this event is at leastad

in ≥ (1 − ω̃i)d. Since
the probability is required to exceed the confidence level
β ∈ (0, 1) we obtain the inequality(1− ω̃n/c)d ≥ β which
can be rearranged to

n ≥ r · log(1− β1/d)

log
(

1− α

α

) .

Notice that

log(1− β1/d) = − log d + log log β−1 + O(log(β)/d)

for larged. Taking into account the asymptotic expression
(11) we finally arrive at

n ∼ 2r−2 π1/2 vm − v1

vm − vm−1

√
d− 1 ( log d− log log β−1) .

(13)
An analysis of this expression under aceteris paribussce-
nario yields the following results: The estimated value for
the population size is not affected by an affine transforma-
tion of the fitness values. But the population size should
increase

1. exponentially for linearly increasing building block
sizer,

2. sublinearly for linearly increasing problem dimen-
siond, and

3. logarithmically for linearly increasing confidence level
β.

Moreover, it is important to keep in mind that our estimate
(13) is conservative, i.e., we consistently overestimate the
actually required population size.

4 Concluding Remarks

We are certainly aware of the fact that the usefulness of
this approach in analyzing evolutionary algorithms is lim-
ited. Nevertheless it offers the opportunity of investigating
subclasses of evolutionary algorithms and objective func-
tions whose analysis was intractable previously. Neverthe-
less, there are several directions for an extension of this
approach. For example, the subfunctions and the building
block sizes may differ. Even the introduction of noise [9]
or weakly nonlinear interactions might be accessible by this
approach.
The most interesting question, however, is associated with
the phenomenon that the results derived by this approach
are in close accordance with experimental results [9] ob-
tained bygenerationalevolutionary algorithms (with uni-
form instead of gene pool recombination). We conjecture
that the answer is closely related to the reasons for the
similarity of the generational Wright and non-generational
Moran model [13] in genetics. A treatise of this mainly
technical topic, however, is beyond the scope of this paper.
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Algorithms. Kovǎc, Hamburg, 1997.

[4] S. Droste, T. Jansen, and I. Wegener. A rigorous com-
plexity analysis of the (1+1) evolutionary algorithm
for separable functions with Boolean inputs.Evolu-
tionary Computation, 6(2):185–196, 1998.

[5] S. Droste, T. Jansen, and I. Wegener. On the analy-
sis of the (1+1) evolutionary algorithm.Theoretical
Computer Science, 276:51–81, 2002.



[6] I. Wegener and C. Witt. On the analysis of a simple
evolutionary algorithm on quadratic pseudo-boolean
functions. Journal of Discrete Algorithms, 3:61–78,
2005.

[7] T. Jansen and I. Wegener. The analysis of evolu-
tionary algorithms – a proof that crossover really can
help. Algorithmica, 34:47–66, 2002.

[8] T. Jansen and I. Wegener. Real royal road functions
- where crossover provably is essential.Discrete Ap-
plied Mathematics, 149:111–125, 2005.

[9] G. Harik, E. Cant́u-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic algo-
rithms, and the sizing of populations. InProceed-
ings of the 1997 IEEE International Conference on
Evolutionary Computation, pages 7–12. IEEE Press,
Piscataway (NJ), 1997.

[10] W. Feller. An Introduction to Probability Theory and
Its Applications Vol. 1. Wiley, Singapore, 3rd (re-
vised) edition, 1970.

[11] D. B. Fogel. Asymptotic convergence properties of
genetic algorithms and evolutionary programming:
Analysis and experiments.Cybernetics and Systems,
25(3):389–407, 1994.

[12] M. Abramowitz and I. A. Stegun, editors.Handbook
of Mathematical Functions. Dover Publications, New
York, 1965.

[13] M. Iosifescu.Finite Markov Processes and Their Ap-
plications. Wiley, Chichester, 1980.

Appendix

Lemma 2
Let 0 < i < n with n ≥ 2. If 0 < x < y < 1 then

1− xi

1− xn
>

1− yi

1− yn
.

Proof:
Let f(x) = (1−xi)/(1−xn). Notice thatf(x) > f(y) for
0 < x < y < 1 if and only if f(·) is strictly monotonous
decreasing on(0, 1), i.e.,f ′(x) < 0 on (0, 1). Since

f ′(x) =
n xn−1 (1− xi)− i xi−1 (1− xn)

(1− xn)2
< 0

⇔ n xn−1 (1− xi) < ixi−1 (1− xn)

⇔ g(x) = xn − n

n− i
xn−i +

i

n− i
> 0

for x ∈ (0, 1) it would suffice to show thatg(·) is strictly
monotonous on(0, 1) and that its infimum is larger than

or equal to zero. Differentiation ofg(·) with respect tox
yields

g′(x) = n xn−1−n xn−i−1 = −n xn−i−1 (1−xi) < 0

revealing thatg(·) is strictly monotonous decreasing on
(0, 1). Sinceg(·) is continuous onR the infimum ofg(·)
restricted to(0, 1) is given byg(1) = 0. ut

Lemma 3
If X andY are independent discrete random variables with

support{0, 1, . . . , n} andX
d= Y thenP{X − Y = 0 } >

P{X − Y = 2 }.
Proof: Let pk = P{X = k } = P{Y = k }. SinceX and
Y are independent one obtains

P{X − Y = 0 } =
n∑

k=0

p2
k and

P{X − Y = 2 } =
n−2∑
k=0

pk pk+2 .

Notice that
n∑

k=0

p2
k −

n−2∑
k=0

pk pk+2 =

1
2

n−2∑
k=0

(pk − pk+2)2 +
1
2

(p2
0 + p2

1 + p2
n−1 + p2

n) ≥ 0 (14)

is zero if and only ifpk = 0 for all k = 0, 1, . . . , n. But this
case is excluded since necessarilyp0 + p1 + · · ·+ pn = 1.
As a consequence, the expression in eqn. (14) is always
larger than zero and the proof is completed. ut

Lemma 4
Let X1, . . . , Xn andY1, . . . , Yn be mutually independent
Bernoulli random variables with0 ≤ P{Xk = 1 } = pk =
P{Yk = 1 } ≤ 1 for k = 1, . . . , n and let

Dn =
n∑

k=1

(Xk − Yk) .

The sum of probabilitiesP{Dn = 0 } + P{Dn = 1 } is
minimal if and only ifpk = 1/2 for all k = 1, . . . , n.
Proof: At first notice that the distribution ofDn is sym-
metrical with respect to zero, i.e., for allj = 1, . . . , n holds
P{Dn = −j } = P{Dn = j }. Let Zk = Xk − Yk and

Dn,k =
n∑

i=1
i 6=k

(Xi − Yi)

for an arbitraryk ∈ {1, . . . , n}. It is clear thatDn,k and
Zk are independent,Dn = Dn,k + Zk, and thatP{Zk =



−1 } = P{Zk = 1 } = pk (1 − pk) = (1 − P{Zk =
0 })/2. After these preparations it is easily seen that

f(p) = P{Dn = 0 }+ P{Dn = 1 }
= P{Dn,k + Zk = 0 }+ P{Dn,k + Zk = 1 }

=
1∑

i=−1

P{Zk = i } · P{Dn,k = −i }+

1∑
i=−1

P{Zk = i } · P{Dn,k = −i + 1 }

= P{Dn,k = 0 }+ P{Dn,k = 1 } −
P{Zk = 1 } (P{Zn,k = 0 } − P{Zn,k = 2 })

= gk(p)− pk (1− pk)hk(p) (15)

with p = (p1, . . . , pn)′ and where the functionsgk(p) =
P{Dn,k = 0 } + P{Dn,k = 1 } andhk(p) = P{Zn,k =
0 } − P{Zn,k = 2 } do not depend onpk. Notice that
Lemma 3 ensures thathk(p) > 0 for everyk ∈ {1, . . . , n}.
Partial differentiation in eqn. (15) with respect topk reveals
that

∂f(p)
∂pk

= (2 pk − 1) hk(p) = 0 ⇔ pk =
1
2

.

Since
∂2f(p)
∂p2

k

= 2 hk(p) > 0 and

∂2f(p)
∂pk ∂pj

∣∣∣∣
pk=1/2

= (2 pk − 1)
∂hk(p)

∂pj

∣∣∣∣
pk=1/2

= 0

for j 6= k it follows that the Hessian matrix∇2f(p) is pos-
itive definite at the stationary pointp∗ = (1/2, . . . , 1/2)′.
As a consequence, the valuef(p∗) is a local minimum of
f(·) for p ∈ [ 0, 1]n.
To ensure thatf(p∗) is the global minimum it is necessary
to investigate the values off(p) at the boundary of[ 0, 1]n.
Sincef(·) is continuous on the compact set[0, 1]n it is
guaranteed that the global minimum and maximum will be
attained over[0, 1]n. In fact, the global maximum is at-
tained atp ∈ {0, 1}n with f(p) = 1. As for a proof that
f(p∗) is indeed the global minimum, first notice that re-
peated application of eqn. (15) leads to

P{Dn = 0 ∨ 1 } = P{Dn−m = 0 ∨ 1 }−

m−1∑
i=0

pn−i (1−pn−i) (P{Dn−i+1 = 0 }−P{Dn−i+1 = 2 })

(16)
for everyp ∈ [ 0, 1]n andm ∈ {1, . . . , n−1}. Now assume
that the global minimum off(·) will be attained at̂p with
f(p̂) < f(p∗) where w.l.o.g.0 < p̂1, . . . , p̂n−m < 1 and

p̂n−m+1, . . . , p̂n ∈ {0, 1}. To indicate that random vari-
ableDn is parameterized bŷp or p∗ we shall writeD̂n and
D∗

n, respectively. Owing to eqn. (16) we obtain

P{D∗
n = 0 ∨ 1 } < P{D∗

n−m = 0 ∨ 1 } and

P{ D̂n = 0 ∨ 1 } = P{ D̂n−m = 0 ∨ 1 } .

Since the parameterŝp1, . . . , p̂n−m of random variablêDn−m

are in the open set(0, 1)n−m it follows that P{D∗
n−m =

0 ∨ 1 } ≤ P{ D̂n−m = 0 ∨ 1 } and finally

f(p∗) = P{D∗
n = 0 ∨ 1 } < P{D∗

n−m = 0 ∨ 1 }
≤ P{D̂n−m = 0 ∨ 1 }
= P{D̂n = 0 ∨ 1 } = f(p̂)

in contradiction to the assumption thatf(p̂) < f(p∗). As
a consequence, the global minimum off(·) over [ 0, 1]n is
attained atp∗ = (1/2, . . . , 1/2)′. ut

Lemma 5
Let X

d= Y ∼ B(n, 1/2) be independent binomial random
variables. The probability distribution function ofZ =
X − Y is

P{Z = k } =
(

2 n

n + k

)
2−2 n

for k ∈ {−n, . . . , n} and zero otherwise. In particular,

P{Z ≥ −1 }+P{Z < 1 } = 1+
(

2 n + 1
n + 1

)
2−2n . (17)

Proof: Notice thatX + Y ∼ B(2 n, 1/2). SinceY is

symmetric one obtainsY −n
d= −Y . Thus,Z = X−Y

d=
X +Y −n which proves the first part of the lemma. As for
the second part, the exploitation of the identity

P{Z = 1 } = P{Z = −1 }

leads to

P{Z ≥ −1 }+ P{Z ≤ 0 }
= P{Z = −1 }+ P{Z = 0 } +

P{Z > 0 }+ P{Z ≤ 0 }︸ ︷︷ ︸
=1

= 1 + P{Z = 0 }+ P{Z = 1 }

= 1 + 2−2 n

[(
2 n

n

)
+
(

2 n

n + 1

)]
= 1 + 2−2 n

(
2 n + 1
n + 1

)
which is the desired result. ut


