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Abstract- It is shown that the stochastic dynamics of for the class of separable fitness functions and the class of
non-generational evolutionary algorithms with binary  non-generational evolutionary algorithms with binary tour-
tournament selection and gene pool recombination but nament selection and gene pool recombination.

without mutation is closely approximated by a stochas- For this purpose, we first present a brief introduction to
tic process consisting of several de-coupled random random walks in Section 2 before entering the theoretical
walks, provided the fithess function is separable in a analysis given in Section 3. Some auxiliary results and their
certain sense. This approach leads to a lower bound proofs are deferred to the appendix in order to exempt the
on the population size such that the evolutionary algo- argumentation from technical details. Our concluding re-
rithm converges to a uniform population with globally  marks are given in Section 4.

optimal individuals for a given confidence level.

2 Random Walks with Absorbing Barriers

1 Introduction The basic definitions and results of this section are extracted

Evolutionary algorithms (EAs) with finite search sets car];rom [10. p. 344f]. Let the se{0, 1, .. ; ’.n} with n < oo
. .~ denote the set of states that may be visited by some stochas-
be exactly modeled by means of finite state Markov cha|n§

D + e ey
Although the derivation of the transition matrices does note Process. L?pi be Ehe probability o_f_a transition f_r_om
: L ; State; to statei + 1, p; be the probability of a transition
pose an essential problem, it is rarely possible to obta g

analytical expressions for the state distribution, limit dis- oM stateito statei —1, andp; be the probability of a tran

L . . - . ~sition from state to statei. If p; > 0,p? > 0, andp;” > 0
tribution, absorption or first passage times et cetera, since _ 0 n v ! v
. . . . . such thatp, +p; +p; = 1fori =1,...,n — 1 while
the required symbolic mathematical operations with these_ Lot 0" .
. . ) . . =p; =0andp;) = 1fori € {0,n} then the stochas-
matrices quickly become intractably complex. Exceptional® g

. : . 1lc process with state spadé, 1,...,n} is called aran-
cases require more or less strong assumptions regarding tfie

. . S . om walk with absorbing barriersThe state$ andn are
population size, the participating evolutionary operator%rmed absorbing whereas the remaining ones are termed
and the problem under consideration. Those assumptions .

. ansient.
usually reduce the state space and therefore the size of

. . . . é?t a;o anda;, denote the probabilities that the random
transition matrices considerably and/or turn the transition : . .
L O X . -walk will be absorbed by staté resp.n provided it was
matrix into a sparse matrix with special properties. This . : :
Started at staté In general, the relationship,, = 1 — a4

IS & common approach in th_e analysis O.f randor_mzed alg(j)s'valid foralli = 0,1,...,n. If the transition probabilities
rithms [1]. In case of evolutionary algorithms this metho

i RS
led to upper bounds of the expected absorption time foarielndependentfrom the states, g, = p~, p; =p"and

simple EAs (single parent, only mutation and selection}fi =ptforalli=1,....n _ L, then

and selected problem classes [2, 3, 4]. Further results on 1—w' if w1

simple EAs can be found in [5, 6] and the references therein. 1-—

First analyses of population-based EAs with crossover and Qin = ) 1)
mutation were presented in [7, 8]. r ifw=1

The presence of mutation is an essential ingredience in the n

theoretical work mentioned so far. The idea of how to apwherew = p~/p™. Evidently, the absorption probabilities
proach population-based EAs with recombination and sere not affected by the value pf. This observation leads
lection but without mutation was introduced in [9]. It wasto the result shown next.

(somewhat vaguely) argued that the dynamics of such EA&®mma 1

resemble the dynamics of a specific random walk. Here, weet p; > 0,p? > 0, andp;” > 0 with p;” + p? + pj =1
seize this suggestion again with the objective of underpirbe the transition probabilities of a random walk with ab-
ning this approach with a sound theoretical argumentaticsorbing state§ andn. If the quotientss~ = p; /(1 — pY)



andpt = pj (1—p?) are independent from indexor all  that each of the™ uniform populations may be attained
i € {1,...,n — 1} then the absorption probability to statewith some non-zero probability provided that the initial
n is given by Eqgn. (1) where = 5~ /p™. population is drawn at random. In [9] it was measured how

Proof: Assume that the random walk has just entered sonfBany subfunctiong(-) have attained their global optimum
transient staté If p? > 0 for the transient states of the ran-aS S0on as the population has become uniform, or equiv-
dom walk, then the random walk stays on average — alently, how many correct bun_dmg blocks have been col-
pY) time units at staté prior to a transition either to state 'ected by an individual of a uniform population. We show

i — 1 orto statei + 1. As long as the random walk staystha}'ﬁ this measure mdegq depends on the absorption p.rob—
at statei the probabilities of a transition to the left or right @bility of a single specific random walk. Moreover, this
remain unaltered for each step. Since we are only intefu@ntity also can be used to obtain lower bounds on or at
ested in the absorption probabilities (and not in the numbé#ast & good approximation of the probability that the uni-
of steps until absorption takes place) we may skip the péorm_ po_p.ulanon finally attained consists of glgbal.ly opti-
riod of staying at staté, provided that the transition prob- Mal individuals. A rearrangement of the resulting inequal-
abilities are appropriately adjusted. Notice that the prodty yields a bound for the population size required to obtain
ability of finally moving to state + 1 conditioned by the @ globally optimal uniform population for a given confi-
event that state has been left ig;™ = pf/(1 — p?), and dence level.

p; = p; /(1 —p?) in case of a transition to state— 1.

Sinceﬁj +p; = 1andp) = 0 for the transient states

i, the originally aperiodic random walk has been converteg 2 Representation of the Evolutionary Algorithm

to a periodic random walk possessing the same absorption

probabilities but a smaller absorption time. Now insist thaRegardless of the choice of the selection and variation op-
p; is identical for all transient states Under this addi- erators, the population of an evolutionary algorithm may be
tional assumption we may use Eqgn. (1) in order to calculatepresented by the matrix

the absorption probabilities of the new random walk. Since
these absorption probabilities are identical to those of the

original random walk the proof is completed. O air a2 - Aid
a1 Q22 -+ (24
A=
3 Evolutionary Algorithms as Random Walks
Ap1 QAp2 - And

3.1 Assumptions and Goals

Let z € S¢ be an element of thé—dimensional search Where the row vectoi,, = (a;1 @i ... a,q) € S repre-

spaceS? wheresS is a non-empty finite set with cardinality sents theth individual ¢ = 1, ..., n) whereas the column
c. The objective functiorf : S¢ — R is representable via Vectoras; = (ai; az; ... an;)’ represents thgene poobf
componeny =1,...,d.
d In a usual evolutionary algorithm withene pool recom-
f(z) = Zg(%—) bination an offspringb would be assembled by choosing
i=1 a gene at random with uniform probability» from each

s gene pool. Equivalently, this might be also achieved as fol-
lows: Calculate the relative frequencikg(s) of elements
&€ S'in each gene pogl=1,...,d. An offspringb is as-
sembled by drawing componebyt from the discrete prob-
ability distribution withP{b; = s} = h;(s) fors € S.

whereg : S — R is a real-valued function. Without los
of generality it is assumed thdt(-) is to be maximized.
The evolutionary algorithm under consideration is chara
terized as follows:

(A1) Finite population sizes < oo. Thus, the population is now equivalently represented by
_ _ _ the probability distributions (+), . .., hgq(-) which might
(A2) Non-generational binary tournament selection. be gathered in d x ¢ matrix (actually, al x (¢ — 1) matrix

would suffice since the probabilities must add to unity).
Since the binary tournament selection method is used in a
(A4) No mutation. ponfge_ner_ational manner th_e update rule for the probabil-
ity distributionsh;(-) is very simple. LetX andY be two
It is clear that an evolutionary algorithm with recombina-offspring independently drawn via gene pool recombina-
tion and selection but without mutation will necessarilytion from the probability distributions; (-). The new prob-
converge to a uniform population (i.e., all individuals areability distributionsh’;(-) for j = 1,...,d are obtained by
identical) with probability one in finite time [11]. Notice '’ (X;) = h;(X;) + A;/nandh;(Y;) = h;(Y;) — Aj/n

(A3) Gene-pool recombination.



where py = P{Xy=1Y,=0,f(X)>fY)}+

10X £ YA F(X) > £(Y) P{X) =0,Yk = 1, f(X) < f(V)}

Aj: 0 IfXJZY} = P{szl,YkZO,Dd7kZ—1}+
-1 ifX;#YAf(X) < f(Y). P{X,=0,Y,=1,Dgp <1}
= P{Xp=1}-P{Yi=0}-P{Dyr=—1}+
Thus, the frequencies of the alleles of the winner are in- P{X,=0)}-P{Yy=1} -P{Dyy <1}
creased whereas those of the looser are decreased for each '
gene pool. This formulation of the evolutionary algorithm = Px (1~ pr) [P{Daj = ~1} +P{Dar <1}]
does not facilitate the analysper se The update proba- = 2pe (1 —pr) aapk )

bility of each gene pool is of course still dependent on the
frequency distributions of the other gene pools. But the

point of view developed so far opens the door to a simpler 7, = 1-— P — PZ
yet not exact analysis that leads to surprising accurate re- = pr(L—pg)[2—(P{Dgr>-1}+
sults under certain circumstances. A demonstration of this P{Duy <1})]
fact is given in the next subsection before proceeding with '
the general case in the subsequent subsection. = 2pe(1=pr) (1~ aqp). )
where
3.3 The Random Walk Model: Instructive Example d
Dy = Z(Xz -Y)
LetS = {0,1},d > 1 andg(s) = as + b wherea # 0 =1
andb € R. Since binary tournament selection is an ordinal 7k
selection method it suffices to consider the cas®) =  anday,, = (P{ Dy, > —1}+P{Dgy < 1})/2.

(1,0). The maximization of the resulting objective functionsuppose there exists ansuch thatny, 4 > a > 0 for all
k=1,...,d. Inthis case one obtaing > 2p;, (1—py) @
d andp, < 2p; (1 —pi) (1 — «a) for everygene pook =
fla) = Z Li 1,...,dregardless of the true state of the other gene pools.

i=1 As a consequence, the entire stochastic process over the
nonlinearly coupled gene pools may be seen a&lepen-
8entrandom walks. Notice that the transition probabilities
Py, p;, andp, are state—dependent even if we usand
regard the inequalities as equalities. But Lemma 1 offers a
F]emedy: Since

is also known as the “counting ones problem.” Since th
cardinality of S is ¢ = |S| = 2 the population is repre-
sentable by a single vectpr= (p1,...,pq) Wherep; =
hj(1) andl — p; = h;(0) for j =1,...,d. Let X andY
be the two offspring generated by gene pool recombinatio

The update rule reduces to +
~+ — pk‘ — >
Dy - g — Qdk Z @
’_ g 1- Dy,
p=p+ o (X-Y) _
Dy = 1pk0 =l-agr < 1-a
where ~ P
y = { 1if f(X) = £(Y), the absorption probabilities of the state—dependent random
—1 otherwise. walk are identical to those of the associated simple ran-

N N _ _ dom walk without state—dependent transition probabilities.
Letp, be the probability that gene pobwill be increased Consequentlyy < & = (1—a)/a < 1if a > 1/2. In this

1/n, p;; the probability that it will be decreased byn and  case Lemma 2 ensures that the probability of absorption at
p§, the probability that it remains unaltered. These probasiater, is lower bounded by

bilities are given by
>1—aﬂ'
p% = P{Xk:LYk:1}+P{Xk=O,Yk=O} am_li&n'

= P{Xy=1}-P{Y,=1}+ . .
P{X. =0} P{Y; =0} !_etB* be the random variable r(_epresentmg the number of
) ) independent random walks starting at steed finally be-
P+ (1 = pk) ing absorbed at staie Evidently, B* is the sum ofl inde-
= 1-—2pk(1—pg), (2) pendent Bernoulli random variables with success probabil-



ity a;,,. Therefore the expectation &f* is given by Sincea depends on the dimensiaehit is possible to de-
velop an asymptotic expression for the population size

E[B] = daj > d- 11:;)” Taking into account equation (7) we obtain
) T 1— 7
— dao" M (5) oo (1= o (1=2/Vrd 4
S\ a 112/ vrd (md)t/2

Notice that random variabl8* represents the number of
optimized subfunctiong(-) within a converged population,
- . .. whereas
or equivalently, the number of correctly compiled building
blocks. The bound on the expectationi®f only depends
on the absorption probability;,, of a specific random walk 1 <1 — B/
and the number of random walks executed in parallel. pL/d
This partially explains the close match between the theoret-
Eg?l considerations and numerical experiments presentedflcr)1r larged. Thus, if. the Qimensioml of the problem in-
Needless to say, it remains to guarantee that sucl an creases the population size should be set to
1/2 actually exists. Lemma 4 in conjunction with Lemma

) = —logd +loglog B~ +O(d™1)

5 yields the tight lower bound v/
y d n= %d (logd — loglog 5~1) + O(d~/?)
1 1/2d-1 1 2d
N - —(d-1) — - —d
a 2+2< d )4 2+<d>4 (6)

in order to guarantee that the EA will converge to the opti-

revealing thatr > 1/2 as required. Since Stirlings’s for- Mal population at least with probability > 0.
mula (see entry 6.1.38 in [12]) leads to

1 2d 1
exp (_6d> < ( p ) 471 (dm)V? < exp (24d) 3.4 The Random Walk Model: General Case

equation (6) may be replaced by the more convenient puftlSl =c=2andV = {g(z) 12 € S} = {v1,..., vm}
remarkably accurate bound with 2 < m < ¢ be the set of values attainable by means

of the subfunctiory(-). Again, the random vector8 and

1 1 1 1 Y denote individuals that are independently generated via
a > -+exp|——] (7 d)71/2 ~ s+ —=—. (7) gene pool recombination. Here, random variablg;, is
2 6d 2 Vnd defined as 7

If the evolutionary algorithm is initialized uniformly at ran-

dom then the initial state of each random walkis [n/2]. d
As a consequence, we obtain Dy = Z(Q(Xi) —g(¥2)).
=1
. 1 i#£k
Ap /2.0 = 1+ oni2

Let pz,' denote the probability that the relative frequency
of the best building block* € S with g(s*) = vy, of
gene poolk is increased byl /n. This probability can be
bounded by

If each random walk is absorbed in stat¢hen the popu-
lation converges to a uniform population with optimal in-
dividuals. The probability of this event is at least

d
d
On/2n Z <1+wn/2) 2h pf = P{9(Xk) = vm,9(Ya) # vm, f(X) = F(Y) } +
<f

P{g(X Vm, §(Yi) = v, f(X
where3 € (0,1) is the desired minimum probability of _Eg( 0 # 9(%%) f)
convergence to the optimal uniform population. Elemen- _ Pla(X,) — Vi) = v F(X) > £(Y) ) +
tary transformations of the rightmost inequality above lead Z LX) = v, g(Te) = vi, J(X) 2 J(V) }
to

i=1
m—1

0> 2oz (1;’5”) / log (1?) . > PL0X) = v g(04) = v JOX) < 1))



m-l which need not be identically distributed and set

= Z P{g(X1) =vm } x P{g(Yz) = v; }

=1 d d d
¥ P{Dus > v — vy } + ag=Y E[Z], bj=> _V[Z], and S;=)_Z;.
me1 i=1 i=1 i=1
> P{g(Xx) =i} x P{g(Ys) = vm } If |Z;| < C < oo foralli > 1andby/d = o(1) then the
i=1 random variabléS; — a4)/bs converges in distribution to
XP{Dap < vm —v; } a standard normal random variabledass> oc. 0

m—1

_ . Proposition 1 3
= Z; PLOLL) = om } > PLg(Yi) = vi} Let{X; :i=1,...,d} and{Y; : i = 1,...,d} be two
= collections of discrete, mutually independent random vari-

xP{Dak = -1~ vm } + ables with identical finite suppoft, . .., v,, }. If the dis-

S tributions of X; andY; are identical fori = 1,...,d then
> P{g(Xk) =vi} x P{g(Y) = vm } d
=1 i i .
XP{Dar < vm —vm-1} P{Z(Xiyé)SZ} ~ <I><Ud)
1=1

= P{g(Xi) =vm } x (1 =P{g(Yx) = v })
xP{ Dy >—6}+
P{g(Y) =vm } x (1 = P{g(Xk) = v })
XP{Dg <d}
= pe (1 =pr) (P{Dgr > -0} +P{Dgr <0})
= 2pk (1 —pr) aak (8)

vV
KA
VR

<
3
||
=
SN
N~

d
wherecs? = Y V[ X; — Y;] and®(-) is the distribution

i=1
function of the standard normal distribution.
Proof: At first it is verified that the preconditions of The-

wheres = v, — v,,_1 > 0 is the smallest difference be- orem 1 are fulfilled. LetD; = X; — Y; fors =1,....d.

tween the maximum and any other value of the subfunctioninc®|Di| < C' := v, — vy < oo the first condition is
9()s agr = (P{Dgp > =6} + P{ Dy, < 6})/2, and verified. As for the second condition, notice that neither

vk = P{g(Xy) = vm } = P{g(Ys) = v, } is the proba- the variance ofX; nor the variance of; can exceed the

bility of drawing the optimal building block, i.ep, is the valuen;,, = (U, — v1)? /4 for qll 1=1,...,d. Since qll
relative frequency of optimal building blocks in gene pc,Orandom variables are mutually independent one obtains
k. Analogously, we obtain d d d
) . .
_ Ogq = V[Dl]: V[XZ—Y”:2 V[Xl]
pr < 2pk (1= pi) (1 — aqp) 9) ; ; ;
_ 2

and < 2d7712nax = d (vm vl) (10)

0 - 2 2

Pr = Zl P{g(Xk) =vi}">0. Using this inequality itimmediately follows that< o4/d <

C/(2d)*/? — 0 asd — oo. Thus, the second precondi-
In principle, we consider all non-optimal building blockstion of Theorem 1 is also fulfilled. As a consequence, the
as being equally bad (no distinction) and assume the worgtie probability distribution of the sum of differences may
case regarding the signal differences, i.e., the smallest valge approximated by a normal distribution. Finally, the in-
of v, — v; wherei # m. As a consequence, we only dis-equality given in the proposition follows from inequality
tinguish between optimal and non-optimal building blockg10) and the fact tha®(-) is a distribution function of a
whose associated subfunction valueswgtgesp.v,,—1. In  continuous random variable. O
other words, we have reduced the general case to the r
dom walk model of the preceding subsection, provided
are able to find amx such thatwg, > o > 1/2 for all

W%i-th X; = g(X;) andY; = g(Y;) we may use Proposition
fto obtain

k = 1,...,d. The problem of finding tight bounds fer _ P{Dgr>—-0}+P{Dgr <9}
in the general case seems intractable. But it is easy to de- Qdk = 2

velop asymptotic expressions via a version of the central ~ & ( 1) )

limit theorem. -~ a1

DN | =

Theorem 1 ([10], pp. 253-255) > g Um T Vmor 2 _
; . > =a>
Let(Z;)2, be asequence of independent random variables U — V1 d—



A Taylor expansion ofb(z) atz = 0 leads to the approxi- 1. exponentially for linearly increasing building block

mation sizer,
1 vm — v 1 2. sublinearly for linearly increasing problem dimen-
ar -+ (11) :
2 Uy, — U1 m(d—1) siond, and

which is in a noteworthy accordance with the bound (7) of - 3. jogarithmically for linearly increasing confidence level
the preceding example whewg, = 1 andv,,_; = v; = 0.

To proceed we have to calculate the new transition proba-

bilities of the modified random walk. Taking into accountMoreover, it is important to keep in mind that our estimate

inequalities (8) and (9) we obtain (13) is conservative, i.e., we consistently overestimate the
N N 1 actually required population size.
L-pi  pf+py ;

4 Concluding Remarks

\Y]

<1 gL (1—pr) (1 —aqr)

=Qqi 2> o i
e (1 — pr) o ) . We are certainly aware of the fact that the usefulness of

this approach in analyzing evolutionary algorithms is lim-
and analogously;” < 1 —a. Thus,® = (1 —a)/a <1 ijted. Nevertheless it offers the opportunity of investigating

and hence _ subclasses of evolutionary algorithms and objective func-
Qin 2 L~ (f}n >1—& (12) tions whose analysis was_intrqctable previously. .Neverthg-
I-w less, there are several directions for an extension of this

wherei denotes the initial state of the random walk for eaclpproach. For example, the subfunctions and the building
gene pool. Suppose the| = ¢ = 2" with » € N and  plock sizes may differ. Even the introduction of noise [9]
that the optimal building block is unique. In this case thyrweakly nonlinear interactions might be accessible by this
elements of the original search s#t may be encoded by approach.

binary strings of lengtff = d - r. If the population of bit The most interesting question, however, is associated with
strings is initialized uniformly at random then there are oOfhe phenomenon that the results derived by this approach
averagey/c = n-27" optimal building blocks in each gene are in close accordance with experimental results [9] ob-
pool. As a consequence, the initial state of each randoggined bygenerationalevolutionary algorithms (with uni-
walkisi= |n-27"]. form instead of gene pool recombination). We conjecture
Now we are in the position to determine a bound for thenat the answer is closely related to the reasons for the
minimum population size such that the population converggilarity of the generational Wright and non-generational
to the optimal uniform population. Owing to (12) the prob-Moran model [13] in genetics. A treatise of this mainly

ability of this event is at least{, > (1 — &’)’. Since technical topic, however, is beyond the scope of this paper.
the probability is required to exceed the confidence level

3 € (0,1) we obtain the inequalityl —@™/¢)¢ > 3 which
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Appendix Lemma 4
Let X4,...,X, andYy,...,Y, be mutually independent
Bernoulli random variables with < P{ X, =1} =p;, =
P{Y,=1}<1fork=1,...,nandlet

Lemma 2
LetO <i<nwithn>2.1f0 <z <y < 1then

1—2at 11—y

n

> .
L—am = 1—yr Dy =7 (X~ Vi)
Proof: ‘ =1
Let f(z) = (1—2")/(1—2"). Notice thatf(z) > f(y) for  The sum of probabilitie®{ D,, = 0} + P{D, = 1} is
0 <2 <y < lifandonlyif f(-) is strictly monotonous - minimal if and only ifp, = 1/2forallk = 1,...,n.
decreasing o0, 1), i.e., f'(x) < 0on(0,1). Since Proof: At first notice that the distribution ob,, is sym-
1 By izl (1 n metrical with respect to zero, i.e., forgl= 1, ..., n holds
flz) = 22 (“i ’;’"'2 ) oo P{D,=-j}=P{D,=j} LetZ, = X; — Y, and
— (En
& nz" 1 (1—2%) < iz~ 1 (1—2a” -
( 71 S Duj =) (Xi=Y)
— n _ n—1 i=1
= g(z) = x m—k +n7i > 0 =i
for z € (0,1) it would suffice to show thag(-) is strictly ~ for an arbitraryk € {1,...,n}. Itis clear thatD,, , and

monotonous or(0, 1) and that its infimum is larger than Z, are independent),, = D,, ;, + Z, and thatP{ Z;, =

As a consequence, the expression in eqn. (14) is always
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0})/2.
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After these preparations it is easily seen that

f(p) = P{Dn:0}+P{Dn:1}
= P{Dn’k—l—Zk:0}+P{Dn’k+Zk:1}
1
= > P{Zy=i}-P{Dnp=—i}+
1=—1
1
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= P{DTL,k:O}+P{D7L,k}:1}_
P{Z,=1}(P{Znr =0} —P{Zn1 =2}
= gr(p) — pr (1 — px) he(p) (15)
with p = (p1,...,pn)" and where the functiong, (p) =

P{ Dy, = O} + P{ Dy = 1} andhk(p) = P{ Ln g =

0} —P{Z,r = 2} do not depend omp,. Notice that
Lemma 3 ensures thai,(p) > 0 for everyk € {1,...,n}.

Partial differentiation in eqn. (15) with respecttpreveals
that

af(p) _ _ _1
o =2pr—1Dh(p)=0 & Pr=5-
Since
*f(p) _
R 2hi(p) >0 and
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for j # k it follows that the Hessian matrix? f(p) is pos-
itive definite at the stationary poipt = (1/2,...,1/2)".

As a consequence, the valyiép*) is a local minimum of
f() forp e [0,1]".

To ensure thaf (p*) is the global minimum it is necessary

to investigate the values ¢f(p) at the boundary of0, 1]™.
Since f(-) is continuous on the compact st 1]™ it is

Pn—m+1,---,bn € {0,1}. To indicate that random vari-
ableD,, is parameterized by or p* we shall writeD,, and
Dy, respectively. Owing to egn. (16) we obtain

P{D;=0v1} < P{D;_,,=0v1} and
P{D,=0V1} P{Dp_m=0V1}.

Since the parametefs, . . . , p,,_, of random variablé,, ..,
are in the open sdéb, 1)~ ™ it follows thatP{ D}_, =
0V1}<P{D,_,=0V1}andfinally

f®") P{D,=0Vv1}<P{D;_,,
P{Dp_m=0V1}

P{D,=0Vv1} = f(p)

—0v1}

<

in contradiction to the assumption thétp) < f(p*). As
a consequence, the global minimumfgf) over[0, 1]™ is
attained ap* = (1/2,...,1/2)". O

Lemma 5

LetX £V ~ B(n,1/2) be independent binomial random
variables. The probability distribution function ¢f =
X-Yis

P{Z=k)= (n2fk> 9-2n

fork € {—n,...,n} and zero otherwise. In particular,

2n+1

P{Zz-l}+P{Z<1}:1+(n+1

) 272" (17)

Proof: Notice thatX +Y ~ B(2n,1/2). SinceY is
symmetric one obtaing — n < _y. Thus,Z = X -Y 4

X +Y —n which proves the first part of the lemma. As for
the second part, the exploitation of the identity

P{Z=1}=P{Z=-1}

leads to

guaranteed that the global minimum and maximum will be

attained ovel0, 1]™. In fact, the global maximum is at-
tained atp € {0,1}™ with f(p) = 1. As for a proof that

f(p*) is indeed the global minimum, first notice that re-

peated application of eqn. (15) leads to
P{D,=0v1} = P{Dy_,, =0V 1}—

m—1

Z Pn—i (1=pn—i) (P{Dn—is1 =0}=P{Dy_iz1 =2})

= (16)
foreveryp € [0,1)" andm € {1,...,n—1}. Now assume
that the global minimum of (-) will be attained ap with
f(®) < f(p*) where w.l.o.g0 < p1,...,Pn—m < 1 and

P{Z>-1}+P{Z<0}
P{Z=-1}+P{Z=0} +
P{Z>0}+P{Z<0}
1+P{Z::0}+P{Z:1}
2n

2
e | () + ()]
n n+1
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1 2—277,
+ (n—i—l)

which is the desired result.




