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In this paper we consider the most important questions, research topics
and technical tools used in various branches of evolutionary algorithms.
The road map we give is to facilitate the readers’ orientation in evolu-
tionary computation theory. In the meanwhile, this survey provides key
references for further study and evidence that the field of evolutionary
computation is maturing rapidly, having many important results and even
more interesting challenges.
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1 Introduction

The term evolutionary algorithm (EA) stands for a family of stochastic prob-
lem solvers based on principles that can be found in biological evolution.
Within this paradigm, achieving a solution to a given problem is seen as a
survival task: possible solutions compete with each other for survival (and
the right to reproduce), and this competition is the driving force behind the
progress that supposedly leads to a(n optimal) solution. This idea has ap-
peared several times independently over the last four decades, but the early
attempts from the fifties and sixties did not receive much follow-up [1]. De-
velopment in the seventies and eighties was more coherent, but it took place
along three rather independent lines of research. This led to three streams that
are traditionally called Genetic Algorithms (GAs), Evolution Strategies (ES),
and Evolutionary Programming (EP) [2-9]. The term evolutionary algorithm
was proposed in 1990, meant as a superclass, containing all aforementioned
variants and also all other techniques based on the evolutionary perception
on problem solving. Since the early nineties several EAs have been proposed,
Genetic Programming (GP) being probably the most influential new stream
[10,11]. The borders between the different streams are loosening up in the
last years, while each style having a number of particular features [12]. The
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emerging field of studying and applying evolutionary algorithms is called evo-
lutionary computation (EC) having its specific research goals and aims; the
most comprehensive collection of knowledge on the subject is the Handbook of
FEvolutionary Computation [13].

It might be clear from this brief summary that the theory of EAs can be given
a double interpretation. On the one hand, it concerns the theory of the gen-
eral evolutionary mechanism, underlying all representatives of the EA family.
Several convergence results based on Markov chains concerning general search
procedures with a population of candidate solutions, undergoing reproduction
and selection belong to this category (even if they are published under the
name “GAs”). On the other hand, it refers to theoretical studies of particular
issues that arise within a specific style of EAs. A well-known example is the
schema theory of genetic algorithms.

There exist several good overviews of EC related theory, containing extensive
bibliographies [14,15]. The main goal of this paper is not the merged repro-
duction of such overviews, rather we are to provide a road map of different
areas of interest in EC, where theoretical activities are taking place or are
likely to emerge.

2 Theoretical Questions

What are the typical theoretical questions in EC? Like in any problem solv-
ing paradigm, the main issue is whether the algorithm reaches a(n optimal)
solution. Obviously, no unconditional ‘yes’ can be expected, so the question is
mostly reformulated as “under which assumptions can it be guaranteed that
the algorithm reaches a(n optimal) solution”. Immediately related to this ques-
tion is the issue of the type of guarantee. In particular, the stochastic nature of
EAs prevents crisp guarantees, turning the question into a probabilistic one.
Technically speaking, almost sure convergence, convergence in probability, or
convergence in mean are some options.

From a purely theoretical point of view, guaranteeing, for instance, conver-
gence with probability 1 is satisfactory. Practically, however, the speed of con-
vergence is just as important. The number of expected search steps needed to
reach a(n optimal) solution is an important implementation independent mea-
sure of algorithm efficiency. In EAs, each new candidate solution is generated
by mutating and/or recombining old solutions, and each newborn solution
is immediately evaluated, i.e., its fitness value is calculated. Therefore, the
number of fitness evaluations is the most commonly used measure to assess
efficiency.



Note that in the foregoing we tacitly assumed that an EA is applied to an
optimization task. Many other types of tasks in, for instance, machine learn-
ing, search, and constraint satisfaction, can be seen as, or transformed to, an
optimization task. Nevertheless, envisioning EAs as optimizers is too narrow
of a view [16]. From a broader perspective, EAs are adaptive systems having a
‘basic instinct’ to increase the average and maximum fitness of a population,
thus optimizing, but are not optimizers in the strict sense. From this perspec-
tive, population dynamics is a typical issue for theoretical investigations. For
instance, the development of the populations gene distribution over time is an
important issue. In GAs, where typically bit-strings of fixed length are evolved,
it frequently occurs that the population converges® to a relatively good bit-
string before having approached the actual solution sufficiently. Analysis of
such premature convergence is essential in the genetic algorithm field.

Additionally to the question whether, and if yes, how fast and by what kind
of population dynamics a solution can be reached, there are important is-
sues regarding the means to desired goals. An answer to this question in ES
is self-adaptation, meaning that the algorithm adjusts itself (its own techni-
cal parameters, called strategy parameters) to the problem while running on
the same problem. Practice indicates that self-adaptation is indeed a power-
ful tool, but only little theoretical work has been devoted to analyzing this
phenomenon. In GAs the emphasis traditionally lies on the search operators:
mutation and recombination (crossover). The notion of schemata, later gener-
alized to formae, and the effects of search operators in preserving, respectively
destroying schemata is one of the key issues in GA theory.

There are of course further theoretical questions (especially in future) but it
is certainly feasible to say that the limit behavior, running time, and dynam-
ical behavior of evolutionary algorithms are the key topics of evolutionary
computation theory in its current stage.

3 Tools and Methods

The above overview of theoretical questions showed a variety of issues. Ac-
cordingly, the technical/theoretical tools that are used, or can be used, for
answering the arising questions are also diverse. Without claiming to be com-
plete, the following methods are relevant.

I The term ‘convergence’ in GAs mostly denotes the phenomenon that the popu-
lation approaches a state where it consists of multiple copies of the same bit-string.
This differs from the traditional use of the word, standing for the approximation of
a solution.



3.1  Schema Theory

The so-called schema theory represents an early attempt to explain the behav-
ior of a specific evolutionary algorithm named the simple genetic algorithm
[3]. First published in 1975, this theory was considered fundamental to the
understanding of GAs until the early 1990s. The reasons for this change of
opinion were as follows: First, schema theory cannot explain the dynamical
or limit behavior of EAs. Second, it is implicitly assumed that the problem
is separable to some extent. The ignorance of this assumption has led to the
“building block hypothesis” which allegedly explains the working mechanism
of GAs. Alternative explanations do exist [17]. Third, the advent of Markov
chain theory in the field of evolutionary computation.

3.2 Markov Chains Theory

Since the population of an EA only depends on the state of the previous popu-
lation in a probabilistic manner, it is clear that Markov chains are appropriate
to model and analyze evolutionary algorithms. First theoretical results, basing
on qualitative models, concerning the limit behavior of EAs were available in
1991 [18]. About the same time there appeared the first papers presenting
the exact transition matrices of the Markov chains associated with certain
evolutionary algorithms [19,20]. Although the entire information about the
evolutionary process is contained in these transition matrices, the degree of
aggregation is too high to allow a simple derivation of detailed answers to par-
ticular questions (like the expected time of visiting the optimum for the first
time). As a consequence, only simple versions of evolutionary algorithms have
been successfully examined in this manner by now (see [15] for a summary of
the results).

3.3 Dimensional Analysis

The observation that the exact Markov model is isomorphic to the associated
EA but offers only little chances to extract important aspects has led to the
idea of approaching EAs via dimensional analysis [21,22]. This methodology is
borrowed from engineering sciences [23]. Dimensional analysis tries to identify
the important dimensions or key features of a complex system and estab-
lishes a functional relationship between them. When applied to evolutionary
algorithms, isolated measures for iterated selection, crossover, and mutation
operators (like takeover time, mixing time and others) are put into some func-
tional relationship which choice is validated (or not) by simulations. Needless
to say, these functional relationships are a result of “good guessing.” But



these descriptive models may give some clues for a more detailed theoretical
study—an avenue that has apparently not been entered yet.

3.4 Order Statistics

The theory of order statistics [24,25] has proved useful in determining the
convergence rates of ESs for convex fitness functions [26-30]. Moreover, if the
population size is infinitely large there is a close theoretical relationship to the
theory of quantitative genetics [30].

3.5  Quantitative Genetics

At a first glance, it seems obvious that an analysis of biologically inspired
dynamical systems should exploit the results developed in theoretical biology.
The problem, however, is that the theoretical questions raised in evolutionary
computation usually differ from those raised in theoretical genetics. An excep-
tion was detected by Miihlenbein & Schlierkamp-Voosen [31], who presented
a specific evolutionary algorithm that can be analyzed via a theory originally
developed for quantitative genetics [32,33]. Although this approach is limited
to additively separable fitness functions and infinitely large populations, it
contributes a piece to the mosaic of evolutionary computation theory that is
under constant development.

3.6 Orthogonal Functions Analysis

Orthogonal functions like Fourier, Walsh, and Haar functions [34] have been
used as a tool for constructing fitness functions that are either hard or easy for
a specific evolutionary algorithm [35]. Occasionally, Walsh transforms played
an important role in the analysis of evolutionary algorithms that were modeled
by quadratical dynamical systems.

3.7  Quadratical Dynamical Systems

The quadratical dynamical systems (QDS) model has been classically used to
model various natural phenomena in physics and biology [36]. As shown in
[37] and subsequent papers, the simple genetic algorithm can be cast into a
QDS, provided the population size is infinitely large. Since the simulation of
a QDS is PSPACE-complete [36], this approach does not lead to an efficient



method of analysis. As a consequence, most work in this field is devoted to
the determination of the systems’ eigenvalues and their stability. Moreover, it
can be shown [36] that, in general, the predictions of the QDS approach are
only sufficiently accurate for extremely large populations.

3.8 Statistical Physics

Physicists have developed various tools to cope with stochastic systems they
encounter in statistical physics. Not surprisingly, there is some work of casting
biological and EA models into their theoretical framework (see e.g. [38,39]).

4 Concluding Remarks

This paper has provided a road map to evolutionary computation theory.
Rather than producing an immense list of references, we have outlined the
most important questions, research topics and technical tools used in various
branches of EAs. Hereby we hope to facilitate the readers’ orientation in a
field that for a long time had the reputation of “childish games” among theo-
retical computer scientists. We are convinced that this survey and those works
in the corresponding bibliography sufficiently demonstrate that evolutionary
computation does have a theory with many important results and even more
interesting challenges.
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