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Abstract

Self-adaptive mutations are known to endow evolutionary algorithms (EAs) with the ability

of locating local optima quickly and accurately, whereas it was unknown whether these local

optima are finally global optima provided that the EA runs long enough. In order to answer this

question it is assumed that the �� � ��-EA with self-adaptation is located in the vicinity � of

a local solution with objective function value �. In order to exhibit convergence to the global

optimum with probability �, the EA must generate an offspring that is an element of the lower

level set � containing all solutions (including a global one) with objective function value less than

�. In case of multimodal objective functions these sets � and � are generally not adjacent, i.e.,

������ � �� � � � �� � � �� � 	, so that the EA has to surmount the barrier of solutions with

objective function values larger than � by a lucky mutation. It will be proven that the probability

of this event is less than � even under an infinite time horizon. This result implies that the EA

can get stuck at a non-global optimum with positive probability. Some ideas of how to avoid this

problem are discussed as well.
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1 Introduction

The self-adaptation of the mutation distribution in evolution strategies (ES) was introduced by Rechen-

berg [1]. Here, self-adaptation means that the control parameters of the mutation distribution are

evolved by the evolutionary algorithm internally, rather than being predetermined by some exoge-

nously given schedule. A simple version of this mechanism was the so-called ���-success rule of the

�� � ��-ES which worked as follows: If the relative frequency of successful (i.e., improving) muta-

tions within some prescribed period of time is larger than ���, then the step size control parameter

(mostly the variance of the mutation distribution) is increased by some factor, whereas it is decreased

if the relative frequency of successful mutations is smaller than ���. This mechanism was modified

by Schwefel [2] who replaced the prescribed factor by a lognormally distributed random variable and

added the control parameter to the genome of each individual. As a consequence, the adjustment of

the control parameter implicitly results from the competition among the individuals. Similar methods

were independently proposed in evolutionary programming by Fogel [3, 4]. Needless to say, self-

adaptation is not limited to the control of mutation distributions. Further fields of application may be

found in recent surveys [5, 6, 7].

Although it is widely recognized that self-adaptation of the mutation distribution accelerates the

search for optima and enhances the ability to locate optima accurately, the theoretical underpinnings

of this mechanism are essentially unexplored. For example, it is generally unclear whether the optima

found are global or local. In the case of convex objective functions (to be minimized), Rappl [8]

has given a proof of exponentially fast convergence for a stochastic algorithm resembling a �� � ��-

ES with ���-success rule whereas Beyer [9, 10] examined also other evolutionary algorithms and

self-adaptation rules.

As for non-convex objective functions, Rudolph [11] has shown that every self-adaptation method

leads to global convergence to the global optimum for objective functions with bounded lower level

sets of non-zero measure provided that the selection method uses elitism and that the self-adaptation

rule does not violate the property of the mutation distribution of ensuring a positive minimum proba-

bility for hitting arbitrary subsets of the search set (cf. Theorem 6.14, p. 204). If the latter condition is

not valid it has been shown1 in case of a one-dimensional continuous test problem and Rechenberg’s
1I wish to thank Lin Dan, P. R. of China, who pointed out that the constants in equation (3) of my paper [12] were

erroneously interchanged and then used throughout the entire paper. But apart from these incorrect constants the results

of the paper remain valid.
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���-success rule that global convergence to the optimum will not happen with probability �.

Here, this result is generalized to multivariate problems. Section 2 offers a detailed description of the

scenario including the evolutionary algorithm under consideration, its presupposed current situation

in its search process, and general criteria for deciding whether or not the EA may get stuck at a local

optimum. In Section 3, these general criteria are then instantiated with the presupposed scenario and

two specific mutation distributions. The analysis indicates that elitist evolutionary algorithms with a

self-adaptation mechanism resembling the ���-success rule may get caught by a local optimum with

positive probability even under infinite time horizon. A subsequent reconsideration of this result and

its proof finally reveals that this property remains valid for all mutation distributions with independent

marginal distributions. A discussion of some ideas of how to circumvent this problem completes this

section. The conclusions are drawn in Section 4.

2 Description of the Scenario

2.1 Algorithm

Let � � �� � � be the objective function to be minimized and set �� � �� � �
� , �� � �. Consider

the Markovian process ���� ������ generated by the stochastic algorithm

���� �

��
� �� � �� �� , if ���� � �� ��� � �����

�� , otherwise
(1)

���� �

��
� �� �� , if ���� � �� ��� � �����

�� �� , otherwise
(2)

where �� � � and �� � ��� ��. Each random vector �� of the sequence of independent and identically

distributed random vectors ��� � � � �� has a joint probability density function with independent

marginal densities

	��
�� � � � � 
�� �
��
���

	��
�
��

where 	��
��� is unimodal with mode at zero and 	��

�
�� � � for all 
� � �. Whenever there is

a successful (i.e., improving) mutation, the step length control parameter �� is increased and it is

decreased otherwise. This algorithm does not exactly match a �� � ��-ES with self-adapting step size

control, but the analysis of this method can be transfered easily to a broader class of evolutionary

algorithms as shown in Section 2.5.
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2.2 Abstract Test Problem

Let there be two disjoint compact sets � � �
� and � � �

� . For each � � � , the objective function

value is ���� � � � � whereas ���� � � for all � � �. If � �� � � � then ���� � �. Without loss of

generality, let � be a hypercube, whose vertices have nonpositive vector components (inclusive the

zero vector), whereas � is a hyberball whose center � � �
� has identical positive vector components

such that the radius of the hyperball is less than 	�	�	. Figure 1 offers a sketch of the test problem if

the dimension is 
 � 	.

�

�

�

�

..............
...............
.................

.........................
..................................................................................................................................................................................................................................................................

...................
................
..............
......

���� � �

���� � �

���� � � ���� � �

���� � � ���� � �

Figure 1: Sketch of the test problem ���� if the dimension is 
 � 	.

Suppose that the initial individual �� is located in the hypercube � � �
� . The EA specified in

equations (1) and (2) will accept a mutation if and only if the new point hits the set �. As long as

this event has not happened the step length control parameter �� is decreased steadily. If this decrease

is driven too fast then the event of a transition to the set � will not occur with probability one. As a

consequence, the convergence with probability one to the global optimum would be precluded in this

case.

In order to provide a tool for deciding whether a “decrease is driven too fast” or not, two simple

criteria are developed next. Without loss of generality, it will be assumed that �� � � � �; other

starting points inside � will only change some constants without affecting the results qualitatively.

Notice that this seemingly simple test problem is more general than one might think at a first glance.
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If there are more lower level sets with ���� � � than just one, then there are even more chances to

escape from this particular local optimum in � . And with a reformulation of some preconditions it is

clear that in case of a finite search space, the secured escape from any local (but not global) optimum

together with an elitist selection operator immediately implies convergence to the global optimum in

finite time with probability �. This was the generalization in the positive sense. As for the negative

sense, notice that every nontrivial multimodal fitness function has at least two locally optimal points

with unequal fitness values. Therefore, at the end of the search the EA will face a situation described

above with positive probability. Even though the EA may have overcome many difficult situations

during the search previously � � � if it fails at the end of the search then the entire run was unsuccessful

(from the point of view of global optimization).

2.3 Criterion for Unsecured Escape from Local Optima

Suppose the existence of an easily determinable upper bound �� for the probability �� of a transition

from the zero vector (� �) to the set �, i.e.,

�� � �
 �� � at step � � � �� �

As a consequence, the upper bound for the probability of a transition to the set � within � � � trials

is given by

�

��

���

��
 ��� � �

��

���

��
 ��� �

If the probability on the right hand side above is smaller than � in the limit, then the transition to �

is not guaranteed. In other words, it may happen with positive probability that the EA never enters

the set �. It is clear that such an event precludes the convergence to the global optimum located in �.

Thus, the sufficient criterion of a potential failure is simply

��
���

��
 ��� � � �
��
���


��

�
�

�
 ��

�
�� � (3)

2.4 Criterion for Secured Escape from Local Optima

Now assume there exists an easily determinable lower bound �� for the probability �� of a transition

from the zero vector (� �) to the set �, i.e.,

�� � �
 �� � at step � � � �� �
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It follows that the probability of a transition to set � within � � � trials is

�

��

���

��
 ��� � �

��

���

��
 ��� �

Therefore the sufficient criterion for a secured escape from the local optimum is simply

��
���

��
 ���� � �
��

���


��

�
�

�
 ��

�
�� (4)

as � � �. If criterion (4) is fulfilled, then the evolutionary algorithm will jump to the set � within

a finite number of steps with probability one. This does not imply that the EA will converge to the

global optimum located in �, but the necessary condition for this property would be fulfilled.

2.5 Extensions of the Scenario

2.5.1 Original (1+1)-Strategy with Self-Adaptation

As mentioned in Section 2.1 the stochastic algorithm considered so far does not match the original

�� � ��-strategy with self-adaptation exactly. Now it will be shown that the results to be obtained for

the EA described in Section 2.1 remain valid for the original �� � ��-EA which changes the step size

control parameter if the relative frequency of improving mutations is below or above some threshold

within �, say, trials. Unless a mutation hits the set � the step size control parameter is decreased by

factor � � ��� �� after every �th trial. This behavior can be squeezed into the original scenario by

considering these � trials as an elementary event of stage �. The probability of observing a transition

to the set � within � trials at stage � is 
�� � �
 ��
 ���
� where �� is the probability of a transition

to � for a single trial. Notice that �� � �� if and only if 
�� � �
 ��
 ���
� � 
�� � �
 �� 
 ���

�

and analogous for the reversed inequality. Therefore the sufficient criterion for potential premature

convergence (eqn. 3) remains valid if �� is replaced by 
��. Since � is finite and

��
���

��
 
��� �
��
���

��
 ���
� �

�
��
���

��
 ���

	�
� �

�� � �
��
���


��

�
�

�
 ��

�
� �

one may conclude that it is sufficient to examine the properties of the EA described in Section 2.1 in

order to obtain results for the �� � ��-EA with usual self-adaptation mechanism.
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2.5.2 Multiple Offspring

Now let the parent produce � � 	 offspring with the same mutation distribution. The offspring with

the least objective function value replaces the parent if and only if its objective function value is less

than that of the parent. This EA is known as the �� � ��-EA. Thus, at every stage there are now � ��

in lieu of � trials. Since � is finite the argumentation of Section 2.5.1 is directly transferable to this

scenario: Again it is sufficient to examine the properties of the EA described in Section 2.1 in order

to obtain results for the �� � ��-EA with usual self-adaptation mechanism.

3 Analysis

3.1 Determination of Simple Probability Bounds

Recall from Section 2.1 that ������� is a sequence of independent and identically distributed random

vectors, each of them with independent, identical, and unimodal marginal densities 	
�
���
�

��� where the

mode is zero and 	
�
���
�

�
�� � � for all 
� � �. Let ��� � �� �� be the scaled mutation vector at step

� � �. Since �� � � � � one obtains

�� � �
 �� � at step � ��� � � � � �
 ��� � � ��� � � � �

Let � � ���� ���
� and � � ���� ���

� with �� � � be two hypercubes such that � � � � �. This leads

to the upper bound

�
 ��� � � ��� � � � �



�

	���
��� ��

�



�

	���
��� ��

(since � � �)

�

��

��

� � �

��

��

�
��
���

	 ��
���
�

�
�� �
�

�

(by independence)

�
��
���



� ��


��

	 ��
���
�

�
�� �
�

�
�

(by Fubini’s Theorem)

�



� ��


��

	 ��
���
�

�
�� �
�

�
�

�

7



(by identical marginal distributions)

�



� ��


��

�

��
	
�
���
�

�

�
��

�
�
�

�
�

�

(by density transformation)

�

�
�
�
���
�

�
��
��

�

 �

�
���
�

�
��
��

���

�

�
	
�
���
�

�
�� � Æ ��� 
 ���

��

�
�
�� 
 ��
��

��
�� � Æ � ��

(by mean value theorem)

�

�
�� 
 ��
��

��

�

�
	
�
���
�

�
��
��

���
(5)

(by unimodality of densities with mode zero)

where ����� denotes the cumulative distribution function of random variable �. In analogous manner

one obtains the lower bound via

�
 ����� � � ��� � � � �



�

	�������� ��

�



�

	�������� ��

�

�
�� 
 ��

��

�� �
	
�
���
�

�
�� � Æ ��� 
 ���

��

���

�

�
�� 
 ��

��

�� �
	
�
���
�

�
��
��

���
� (6)

For the sake of notational convenience the sub- and superscript appearing in the marginal density

	
�
���
�

��� will be omitted hereinafter. This does not cause any problem since the sequence of random

vectors ������� are independent and identically distributed and since the marginal densities are iden-

tical for each vector.

3.2 Proof of Potential Premature Convergence

In order to check for potential premature convergence one has to insert the upper bound in eqn. (5)

into the criterion given in eqn. (3). The calculations required for this purpose can be facilitated by

exploiting the inequalities given in eqn. (7) which follow immediately from the series expansion of

the logarithm (also see [12]): If � � ��� �� � � then

� � � �
��
���

��

�
� 
��

�
�

�
 �

�
�

��
���

�� �
�

�
 �
�
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Since �� � ��� �� and ���� � �� for all � � � one obtains

��
���

�� �
��
���


��

�
�

�
 ��

�
�

��
���

��
�
 ��

�
�

�
 ��

��
���

�� � (7)

Consequently, instead of inserting eqn. (5) into eqn. (3) directly, it suffices to insert eqn. (5) into the

rightmost expression of eqn. (7). Moreover, since the constant factor ���� 
 ��� does not affect the

convergence behavior of the series the sufficient criterion for potential premature convergence reduces

to
��
���

�� � ��� 
 ���
�
��
���

����

�
	�

�
��
��

���
��

and eventually, after ignoring the constant factor ��� 
 ���
�, to

��
���

����

�
	�

�
��
��

���
�

��
���

�� ��

where �� � �	������������
� � �. Notice that the series above converges if, for example, ����� � � �

� as � ��. In the scenario considered here one has �� � �� �
� with � � ��� �� such that

�
���
� �

�
	���� �

��
� ����

�� ��

����

� ��� 
��
���

�
	�������

����
where � � ����� � �. As a consequence, the final criterion for potential premature convergence

reads


��
���

�
	�������

����
� � � (8)

Popular choices for mutation distributions are Gaussian and Cauchy distributions which will serve

as explicit examples for using the criterion given in eqn. (8). The marginal density of the standard

multivariate Gaussian distribution is 	��
� � �	 ������ ����

��	�. Insertion into eqn. (8) leads to

�
	�������

����
�

�

�	 ��������
���

�



��

	 � �� �

�
� � � �

as � ��. As for the Cauchy distribution 	��
� � ���� �� � 
���, insertion into eqn. (8) yields

�
	�������

����
�

�

����
��

��� � �������
� �� � �

as � � �. Thus, neither Gaussian nor Cauchy mutations can ensure the escape from local optima

with probability one. This observation raises the question which distribution might lead to secured

escape from local optima under the self-adaptation mechanism considered here. A closer look at

equation (8) reveals that there is no marginal density not fulfilling criterion (8). Suppose that the tail
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of the marginal density decreases like 	��
� � ��
��Æ as 
 �� for some Æ � �. Owing to criterion

(8) one obtains �
	�������

����
�

���Æ

����Æ���
� ���Æ � �

as ���. Notice that a function with Æ � � is not a marginal density function since its integral over

� diverges.

3.3 Schedules with Secured Escape from Local Optima

The preceding section has shown that the too-quickly-decreasing step sizes produced by the step size

rule given in eqn. (2) are the reason for potential premature convergence. Therefore the focus of

interest is now shifted towards appropriate modifications of the step size rule such that the decrease

in the step sizes is sufficiently decelerated for ensuring the escape from local optima.

According to the criterion given in eqn. (4) together with inequality (7) it suffices to show that

��
���


��

�
�

�
 ��

�
�

��
���

�� �
��
���

�
�� 
 ��

��

�� �
	�

�
��
��

���
��

where �� is the lower bound given in eqn. (6). Assume that the tails of the marginal densities behave

like 	��
� � ��
��Æ as 
 � � for some Æ � � (this includes the Cauchy distribution with Æ � �).

Then it is easily seen (after ignoring constant factors) that the series above diverges if, for example,

���� ����Æ� �� �
�

�

for all � � �. Thus, a step size rule producing the schedule �� � ������Æ �� in case of continued

unsuccessful mutations would finally lead to a guaranteed escape from a local optimum (after a finite

number of trials). An imaginable realization of such a step rule might be as follows:

���� �

��������
�������

��

�
� �

�

�

����Æ ��

, if ���� � �� ��� � �����

��

�
�


�

� � �

����Æ ��

, otherwise

(9)

where � � �. A step size rule of this kind, however, will lead to very slow local convergence velocity

(see fig. 2). If an improvement is not found quickly then � gets large and the adapting factors are

practically equal to �. As a consequence, the step sizes are hardly altered then.

It might therefore be a more favorable alternative to apply the usual step size rule (guarantees fast local

convergence speed) accompanied by “occasional” mutations with a fixed distribution (guarantees
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Figure 2: Typical runs for EAs with self-adapting mutation distribution when minimizing the fitness

function 	��� �
��

��� �
�
� with 
 � ��, starting point ������ � � � � ����� � �

	� and initial step size

�� � ���. Case (a): Usual �����-EA with ���-rule, Gaussian mutations, period � � 	
 and factors

���� ��� � ���	� �����. Case (b): The ��� ��-EA with the self-adaptation rule as given in equation (9)

and Cauchy mutations.

global convergence to global optimum). For example, in addition to the original � Gaussian mutations

with adapted step sizes one could simply generate an offspring from a fixed Cauchy distribution.

This would yield a �� � �� � ���-ES with fast local convergence speed and the property of global

convergence to the optimum at the expense of only little additional computing effort. A proof of these

properties follows immediately from Rappl’s local convergence result [8] and any global convergence

result for a �� � ��-EA using fixed mutations distributions with unbounded support (see e.g. [13]).

4 Conclusions

Practical experiences during the last three decades have led to the empirical expert knowledge that

self-adaptation mechanisms in evolutionary algorithms are often a cause for successful and surpris-
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ingly fast detection of good solutions on the one hand, but also sometimes the cause for unsuccessful

optimization experiments on the other hand. Here, it was proven that elitist evolutionary algorithms

with a self-adaptation mechanism resembling Rechenberg’s ���-success rule will get caught by non-

global optima with positive probability even under an infinite time horizon. The proof is specialized to

mutation distributions with independent marginal distributions. The conjecture that the result remains

valid for mutations with dependent marginal distributions is certainly not too risky—but the proof

will be technically different to the one presented here. Other versions of self-adaptation will pose

additional technical difficulties. Moreover, there is no obvious reason why self-adaptive evolutionary

algorithms without elitist selection should behave differently in this context. As can be seen from this

list of open problems, the theoretical foundations of self-adaptation are, at best, in statu nascendi.

This list may be continued by inquiring after self-adaptation rules that will not get stuck at non-

global optima. Since this paper offers a theoretical criterion for a distinction between successful

and possibly unsuccessful self-adaptation rules, the development of successful rules is made possible

now: A simple example of such a rule has been given here. This rule not only offers convergence

to the global optimum but also fast convergence towards local optima. Although these properties are

theoretically appealing it is currently unknown whether or not this modified self-adaptation rule will

be beneficial in practical applications.

From a theoretical point of view it is clear now that a detailed analysis of evolutionary algorithms with

a possibly unsuccessful self-adaptation rule must inquire after the probability that the EA will reach

the optimum at all or after the probability of finding the optimum in a prescribed amount of time in

order to predict how many independent runs of the EA are necessary for obtaining a sufficiently good

solution.
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