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Abstract� This paper presents the results of a parameter study of the
Grand Deluge Evolutionary Algorithm� whose special features consist
of local interactions between individuals within a spatially structured
population and a self�adjusting control mechanism of the selection pres�
sure� Since both ingredients are parametrizable this study aims at the
identi�cation of the signi�cance and sensitivity of the parameter settings
with regard to the performance of the algorithm� especially under the
transition from one� to two�dimensional neighborhood patterns�

� Introduction

In ���� we presented the Grand Deluge Evolutionary Algorithm �GDEA�� which
combines the traditional proportionate selection operator with a self	organizing
acceptance threshold schedule
 The population of the GDEA possesses a spa�
tial structure to allow scalable parallel implementations� which means that the
individuals are distributed over the vertices of a connected graph and that the
genetic operators are applied locally in some neighborhood of each individual

This algorithm was embedded in the framework of probabilistic automata net�

works and could be proven to be globally convergent with probability one under
the assumption that the genotypes of the individuals are binary strings
 The
parameter study made in ���� employed a multiple knapsack problem as objec�
tive function and investigated the signi�cance of the parameters with regard
to performance by varying the delay of adjusting the threshold values �selec�
tion pressure� and the neighborhood size �locality� in a ring topology� i
e
� with
one	dimensional neighborhood structures
 While the overall performance of the
GDEA was great compared to a traditional genetic algorithm �GA�� the results
were disappointing with respect to parallelism� where small neighborhood sizes
are preferred to obtain low communication requirements
 But instead the pa�
rameter study resulted in a relatively large optimal neighborhood size of about

� individuals
 Since the ring topology is only one possible implementation of the
GDEA� the next step was to run the same experiments with a di�erent topology

We chose a toroid grid for two reasons� it seems to be the most natural extension
of a topology just to increase the dimension� and the torus is the most popular
structure for parallel implementations


A description of the GDEA is given in section �� with emphasis on the design
of local reproduction operators for individuals distributed over the vertices of a



connected graph and the realization of a self	adjusting threshold control
 Sec�
tion � �rst presents our selection of neighborhood structures and test problems�
before the results of the parameter study are discussed
 Finally� we draw some
conclusions in section 



� Description of the Algorithm

It is assumed that the reader is familiar with the basics of evolutionary algo�
rithms �EA�
 For a recent comprehensive overview see the monograph by B�ack
���
 The genetic operators of the GDEA for individuals with binary genotype
are based on those of the traditional GA as described by Goldberg �
�
 Since
mutation and crossover remain unchanged they are not explicitly de�ned here

The changes only a�ect reproduction and o�spring acceptance


��� Local Reproduction

Since all individuals in a population compete with each other for the chance to
produce o�spring� a traditional EA requires information about the �tnesses of all
individuals during the reproduction phase
 This kind of global knowledge makes
an algorithm unsuitable for an e�cient parallel implementation
 Therefore� most
parallel implementations of EAs base on local reproduction rules ��� �� ��� �� ���
�� �
� which can be applied simultaneously to smaller subsets of the population


In order to be comparable to a standard GA� in ���� a localized proportion�
ate selection was de�ned for a ring topology
 In the following a more general
de�nition is given which does not even depend on homogeneous neighborhood
structures


Let be n the population size� � the dimension of the search space� P t � fxti �
IB� � � � i � ng the population at generation t� and N� � Pf�� � � � � n� �g a set
of indices de�ning the neighborhood N� of the individual x

t
�
 N� is a family �not

a set� consisting of all xtk with k � N�
 The �tness function F � IB� �� IR� is
normally the result of windowing and scaling techniques applied to the objective
function
 If the search space of the objective function is D �� IB�� e
g
 D � IRN �
a mapping function m � IB� �� D must be applied additionally


The ��local relative �tness of an index � can now be de�ned as

pt���� ��
F �xt��P

k�N�

F �xtk�

and the ��local cumulative relative �tness of an index � as

CRFt���� ��
X

k�N� � k��

pt��k��

Proportionate selection can now be applied in a canonical way
 For each
parent to select� a random number � is drawn uniformly from � �� �� and the
individual with index k is chosen with



CRFt��k� � minfi � N� � CRF
t
��i� 	 � g�

As an example� �gure � shows a small torus and the population indices of the
individuals
 In case of a von	Neumann neighborhood structure� the individuals
inside of the dashed line belong to the neighborhood of the individual with index
�� so N� would be f�� �� �� ����g
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 Example of a neighborhood structure on a torus�

The following table lists the ��ctional� �tness values and the resulting local
relative �tnesses�

� � � � � ��

F �xt�� �� � �� �� 


pt���� 
	�� �	�� �	�� �	�� �	��

CRFt���� 
	�� �	�� �	�� �
	�� ��	��

The generation of o�spring can be performed in parallel
 For each position
in the population� two parents are chosen from the neighborhood by local pro�
portionate selection� and one child is generated by recombination and mutation

The individual at the current position is replaced by the new child if the latter
is accepted� otherwise it remains unchanged




��� Threshold Adjustment

As shown in ����� a standard GA with proportionate selection is not globally con�
vergent to the optimum
 Motivated by the Grand Deluge Algorithm of Dueck
���� an adaptive threshold acceptance schedule was added in ����
 For the con�
vergence proof� the reader is referred to the original work
 In the GDEA� the
local threshold 
 tk at index k and generation t is de�ned as


 tk ��

�
F �x�k� � if t � �

maxf
 t��k � F �xt��k �g � otherwise

���

The threshold delay � � IN speci�es the lag of generations that a current
�tness value will enter the threshold update rule ���
 A new o�spring at a given
position in the population is only accepted if its �tness value exceeds the local
threshold 
 tk
 This �tidal value� is the maximum of the �tness of the predeces�
sor at this position � generations in the past� and the tidal value of the last
generation
 Evidently� the local tides are monotonic rising by de�nition


Since the value of � determines how many generations without improvement
are tolerated at most� it is a control parameter of the selection pressure
 For
� � �� only improvements are accepted� whereas values beyond the maximum
number of generations turn o� the threshold acceptance
 In conjunction with
large neighborhoods� the latter case is very close to a traditional GA


��� Outline of the Algorithm

The following pseudo code gives a sketch of the algorithm�

initialize population

REPEAT

FOR EACH node

select two neighbors

recombine them

mutate resulting offspring

evaluate offspring

IF F�offspring� � threshold

THEN

accept offspring

ENDIF

update local threshold

ENDFOR

UNTIL maximum number of generations

� Computational Experiments

��� Choice of Neighborhoods

In ���� we assumed that the population�s directed graph G � �V�E� with edges
E � f��� �� � � � V� � � N�g was embedded into a processor network with bidi�
rectional ring topology
 To keep the �virtual� communication load low we decided



to use neighborhoods of the following type� Let R � IN denote the neighborhood
radius and O � fa � ZZ � jaj � Rg a set of o�sets
 The neighborhood set of the
individual with label � is N� � f�� � n � a� mod n � a � Og where n is the
population size
 We shall say �with some lack of precision� that the population is
living on a ring or that the optimization problem is treated on a ring whenever
a neighborhood of the above type is used


Since the ring topology is not the only admissible choice for a neighborhood
structure there arises the obvious question whether two	dimensional neighbor�
hood patterns would result in a qualitative change of performance or a change of
signi�cance of the parameters controlling locality and selection pressure
 There�
fore the individuals were placed on a toroidal processor network where each in�
dividual possesses the same two	dimensional neighborhood pattern
 These pat�
terns can be de�ned by a mask or matrix M � �mij� with an odd number of
columns and rows whose central element refers to the current individual with
label � � V 
 An entry of M with mij � � indicates that the corresponding in�
dividual on the torus belongs to the neighborhood set of individual �� otherwise
the entry is zero
 This is enough to calculate the neighborhood sets�

The matrixM � �mij� with r rows� c columns �r� c odd�� mij � f�� �g for all
i � I � f�� �� � � �� r � �g� j � J � f�� �� � � � � c� �g and mr���c�� � � is called the
neighborhood mask
 The set

OM �
n�

i �
r

�
� j �

c

�

�
� ZZ� � mij � �� �i� j� � I 
 J

o

is termed the o�set set of neighborhood maskM 
 For example� the neighborhood
mask

M �

�
BBBB�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
CCCCA

de�nes a neighborhood pattern that is related to the maximumnorm in ZZ�� i
e
�
the o�set set is OM � fw � ZZ� � kwk� � �g or explicitly

OM � f��� ��� ������� ������� ���� ��� ���� ��� �������� �������g�

Let the pair �n� k� � IN� such that n � k 
 q with q � IN and where n is
the population size
 The function �k��� � �� div k � � mod k� with its inverse
���k �a� b� � a 
 k� b will serve to map the population into a grid and vice versa

Now the neighborhood set can be de�ned easily�

N� � f���k ���k��� � �i� j� � �q� k�� mod �q� k�� � �i� j� � OMg�

In this formalism the experiments made on the ring ���� can be described by
setting k � n and O � fw � ZZ� � w� � �� kwk� � Rg


While the neighborhood size in a ring can be increased gradually the neigh�
borhood size de�ned by regular two	dimensional patterns increases in larger



steps when usual distance measures �norms in ZZ�� are used
 Therefore� the com�
parability of the e�ects of locality between one	 and two	dimensional patterns
would be hardly possible
 As a consequence� we de�ned neighborhood masks
whose patterns were inspired by chamfer	distances ��� in order to �smooth�
the transitions to larger neighborhood sizes
 For example� the matrix C below
characterizes � di�erent neighborhood masks with neighborhood sizes ranging
between � and 
��

C �

�
BBBBBBBB�

� � � � � � �
� � 
 � 
 � �
� 
 � � � 
 �
� � � � � � �
� 
 � � � 
 �
� � 
 � 
 � �
� � � � � � �

�
CCCCCCCCA

The mask Md is de�ned via mij � � if cij � d for d � �� � � � � � and zero
otherwise
 Our experiments were made with patterns of the above type resulting
in the neighborhood sizes f�� �� ��� ��� ��� ��� ��� 
�� 
������������� ���g where
the steps between the last �ve sizes were enlarged intentionally to reduce the
computation time required for our study


��� Objective Functions

Our experiments were made on two problems� a pseudo	boolean and a pseudo	
continuous one
 The �rst one was a NP	hard multiple knapsack problem already
investigated for populations on a ring in ����
 The problem can be formalized as
follows�

f��x� � cTx � max�
s
t
 Ax � b

with x � IB�� c � IR�
�� b � IRm

� and A � IRm��
� 
 The constraints were included

into the objective function by a penalty technique in the same manner as in ����

f��x� � cTx� � 
 cmax � max� �

where � denotes the number of violated constraints and cmax the largest entry in
the cost vector c
 Here� the problem had dimension � � �� andm � � constraints


The objective function of the second test problem was a version of the well	
known Rastrigin function�

f��x� � �����
��X
i��

fx�i � �� � �� cos��
 xi��g � max�

where each xi was represented by a Gray	coded binary string of length �� such
that jxij � ���
��� for each i � �� � � � � ��
 Thus� the string length of an individual
is � � 
��




��� Computational Results

The population size was set to ��� for both the ring and torus topology
 While
the labels of the individuals in the ring were arranged in linear order� a grid of
��
 �� was the basis of the labeling in the torus


For the multiple knapsack problem� the neighborhood size j N� j was varied
from � to ��� for the ring topology �results taken from ������ and from � to ���
for the torus
 In both cases� the threshold delay � ranged from �� which can
be seen as a local elitist selection� to ��� which was the maximum number of
generations
 For each combination of � and j N� j the success frequency� which is
the ratio of the number of runs that found the global optimum to total number
of runs� was calculated from ��� independent experiments


Fig� �
 Success frequency for the multiple knapsack problem with varying parameters�

Figure � summarizes the success frequencies depending on � and j N� j in
both ring and torus topology� i
e
� for one	 and two	dimensional neighborhood
patterns
 In contrast to the results of the same experiment in the ring topology�
the highest success rates in the torus were obtained by the smallest neighborhood
sizes
 In fact� the optimal settings were approximately �j N� j� �� � �
�� ���� for
the ring and �j N� j� �� � ��� �
�� for the torus
 These settings achieved a success
frequency of about �� � and �� �� respectively
 An interesting observation is
the fact that the torus neighborhood yields better results when properly tuned�
whereas the ring topology behaves slightly more robust against missetting of the



neighborhood sizes
 But in both cases� it is obvious that a retarded initiation of
selection pressure is the key to success� Missing selection pressure �too large ��
as well as too strong selection pressure �small �� decays the success frequency to
almost zero


Fig� �
 Averaged best �tness for the Rastrigin test problem with varying parameters�

In contrast to the �rst test problem� success frequencies are not an appro�
priate quality measure for a continuous function such as the Rastrigin problem

Instead� the best results after ��� generations were averaged out of ��� runs

Figure � shows the response of the GDEA to the variation of � and j N� j for the
Rastrigin function using ring and torus topology
 Again� the best performance
of the torus can be observed with the smallest neighborhood sizes while the ring
requires a neighborhood size similar to the �rst experiment
 It is quite evident
that the ring is much more robust against parameter missettings than the torus�
The in uence of both the threshold delay value and the neighborhood size in
the ring is remarkably small
 In contrast� the torus is insensitive with respect to
the delay value only if the neighborhood size is small� and it is insensitive with
respect to neighborhood size only if the threshold delay is minimal �implying
strong selection pressure�


� Conclusions

Speaking in terms of biology� the parameters examined in this paper are selection
pressure �threshold delay� and locality �neighborhood size�
 Obviously� a moder�
ately retarded initiation of selection pressure causes a speed	up of the GDEA on



its way to the global optimum
 With respect to parallelism �and on base of our
two test problems�� we can state that locality does not harm the performance of
the EA
 Rather� the performance of the spatial structured EA was better equal
than the traditional panmictic �not spatially structured� EA
 The additional us�
age of the delayed threshold mechanism o�ers further potential improvements
! in any case� the threshold mechanism does not have a deteriorating e�ect


Our experiments provide some evidence that the neighborhood size in the
torus should be very small and it appears safer to prefer small threshold de�
lays compared to too large ones
 Both observations are pleasant for parallel
implementations� Small neighborhood sizes and small threshold delays have low
communication bandwidth and memory demands� respectively


Finally note that the di�erent behavior of the ring and the torus topology
under the condition of equally sized neighborhoods reveals that locality is not
provided by the number of neighbors� but by the connectivity of the neighbor�
hood structure
 In order to examine this in a more general context� a de�nition
of locality by means of graph theory might be a fruitful route
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