
Local performance measures

That is, for t → ∞ a residual distance to the optimum point remains. In other words,( , ) strategies
without σ control are not function optimizers; they do not converge to the optimum.

For example, consider the(µ, λ) ES. From equation (B2.4.53) one obtains

(µ, λ) ES,σ = constant> 0: σ?0 = 2cµ,λ ⇒ r∞ = σn

2cµ,λ
. (B2.4.70)

Similar results can be obtained (or observed in simulations) for all( , ) strategies including bitstring
optimizations (forpm = constant> 0, see e.g. theOneMax ϕ1,λ = Q̄1,λ (B2.4.41)) and combinatorial
problems (e.g. ordering problems; see Section G4.2). G4.2

B2.4.2 Genetic algorithms

Günter Rudolph

Abstract

The expectation of the random time at which a genetic algorithm (GA) detects the global
solution or some other element of a distinguished set for the first time represents a useful
global performance measure for the GA. In this section it is shown how to deduce bounds
on the global performance measure from local performance measures in the case of GAs
with elitist selection, mutation, and crossover.

B2.4.2.1 Global performance measures

Let the tuplePt = (X(1)
t , . . . ,X

(µ)
t ) denote the random population ofµ < ∞ individuals at generation

t ≥ 0 with X(i)
t ∈ B` = {0, 1}` for i = 1, . . . , µ. Assume that the genetic algorithm (GA) is used to

find a global solutionx∗ ∈ B` at which the objective functionf : B` → R attains its global maximum
f (x∗) = f ∗ = max{f (x) : x ∈ B`}. The best objective function value of a populationPt at generation
t ≥ 0 can be extracted via the mapping

fb(Pt ) = max{f (X(i)
t ) : i = 1, . . . , µ}.

Then the random variable
T = min{t ≥ 0 : fb(Pt ) = f ∗}

denotes thefirst hitting timeof the GA. Assume that the expectation ofT can be bounded viaE[ T ] ≤ T̂ B2.2.2

whereT̂ is a polynomial in the problem dimensioǹ. If the GA is stopped afterc T̂ steps withc ≥ 2 one
cannot be sure in general whether the best solution found is the global solution or not. The probability
that the candidate solution is not the global solution isP{T > c T̂ } which can be bounded via the Markov
inequality yielding

P{T > c T̂ } ≤ E[ T ]

c T̂
≤ T̂

c T̂
= 1

c
≤ 1

2
.

After k independent runs (with different random seeds) the probability that the global solution has
been found at least once is larger than or equal to 1−c−k. For example, after 20 runs withc = 2 (possibly
in parallel) the probability that the global solution has not been found is less than 10−6.

If such a polynomial bound̂T existed for some evolutionary algorithm and a class of optimization
problems whose associated decision problem is nondeterministic polynomial-time (NP) complete, every
optimization problem of this difficulty could be treated with this fictitious evolutionary algorithm in a
similar manner. In fact, for the field of evolutionary algorithms this would be a pleasant result, but such
a result is quite unlikely to hold.

B2.4.2.2 Deducing the global performance measure from the local performance measure

The moments of the first hitting time can be calculated from the transition matrix of theMarkov chain B2.2.2

associated with the GA and the objective function under consideration. Unless the transition matrix is
sparsely filled the practical application of the formulas given by Iosifescu (1980, pp 104, 133) is usually
excluded.
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The general idea to circumvent this problem is as follows. LetS = B` × · · · × B` = (B`)µ be the
state spaceof the Markov chain. Then each elementx ∈ S represents a potential population that can beB2.2.2

attained by the GA in the course of the search. Notice that it is always possible to decompose the state
space inton subsets via

S =
n⋃
i=1

Si with Si ∩ Sj = ∅ for i 6= j

with the property
∀x ∈ Si : ∀y ∈ Sj : i < j ⇒ fb(x) < fb(y).

If the GA employselitist selectionit is guaranteed that a population in subsetSj will never transition to C2.7.4

a population represented by a state in some subsetSi with i < j . Thus, the Markov chain moves through
the setsSi with ascending indexi. In general, this grouping of the states does not constitute a Markov
chain whose states are represented by the setsSi (see Iosifescu 1980, pp 166–70). In this case one has
to determine a lower bound on the probabilities to transition from some arbitrary element inSi to an
arbitrary element inSj . These lower bounded probabilities represent the transition probabilitiespij for the
grouped Markov chain to transition from setSi to Sj . After the probabilitiespij have been determined
for j = i + 1, . . . , n the setting

pii = 1−
n∑

j=i+1

pij

ensures that the row sums of the transition matrix of the grouped Markov chain are unity.
If the mutation of an individual is realized by inverting each bit with somemutation probability C3.2.1

p ∈ (0, 1) then there exist nonzero transition probabilities to move from setSi to Sj for all indices i, j
with 1≤ i < j ≤ n. This Markov chain can be simplified by setting

qii = pii +
n∑

j=i+2

pij

qi,i+1 = pi,i+1

qi,i+k = 0 for k ≥ 2 andi + k ≤ n
qij = 0 for j < i.

Thus, only transitions from the setSi to Si+1 for i = 1, . . . , n−1 are considered—the remaining improving
transitions are ignored by bending them back to stateSi . Evidently, this simplified Markov chain must have
a worse performance than the original Markov chain, but its simple structure allows an easy determination
of the first hitting time representing an upper bound on the first hitting time of the original chain. To this
end, letTij denote the random time that is necessary to transition from setSi to Sj . Then the expectation
of T is bounded by

E[ T ] ≤
n−1∑
i=1

E[ Ti,i+1 ]. (B2.4.71)

Evidently, the probability distribution of random variableTi,i+1 is geometric with probability density
function

P{Ti,i+1 = τ } = qi,i+1 (1− qi,i+1)
τ−1

and expectationE[ Ti,i+1 ] = 1/qi,i+1. Consequently, the expectation of the first hitting timeT of the GA
can bounded by

E[ T ] ≤
n−1∑
i=1

1

qi,i+1
. (B2.4.72)

It is not guaranteed that this approach will always lead to sharp bounds. The manner in which the state
space is decomposed determines the quality of the bounds. Unfortunately, there is currently no guideline
helping to decide which partitioning will be appropriate. The following examples will offer the opportunity
to gain some experience, but before beginning the examples notice that it can be sufficient to analyze the
(1+1) GA with mutation and elitist selection to obtain an upper bound of the first hitting time: an ordinary
GA with elitist selection, mutation, and crossover is at least as fast as a(1+1) GA with the same mutation
probability. Thus, the potential improving effects of crossover will be ignored. This can lead to weak
bounds—but as long as the bounds are polynomially bounded in` this approach is reasonable.
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B2.4.2.3 Linear binary problems

Definition B2.4.1.A function f : B`→ R is calledlinear if it is representable via

f (x) = a0+
∑̀
i=1

ai xi

with x ∈ B` andai ∈ R for i = 0, 1, . . . , `. �

The so-calledcounting ones problemconsists of the task of finding the maximum of the linear function

f (x) =
∑̀
i=1

xi

that is attained if all entries in vectorx are set to1. Bäck (1992) investigated this problem for a(1+ 1)
GA with mutations as described previously and derived the transition probabilities for the Markov chain
while Mühlenbein (1992) succeeded in calculating an approximation of the expected number of function
evaluations needed to reach the optimum.

The first step of the analysis is to reduce the state space of the Markov chain by an appropriate
grouping of states: to this end note that there are

(
`

i

)
states withi ones that can be grouped into one

state because the specific instantiation of the vector with exactlyi ones is not important—the probability
of transition to any other state only depends on the number of ones (or zeros). Thus, the states of the
grouped Markov chain represent the number of ones. This reduces the cardinality of the state space from
2` to `+ 1: the Markov chain is in statei ∈ {0, 1, . . . , `} if there are exactlyi ones in the current vector.
Consequently, one would like to know the expected time to reach state`.

The next step consists of the determination of the transition probabilities. Since the algorithm only
accepts improvements it is sufficient to know the transition probabilities from some statei to some state
j > i. Let Aik be the event that ‘k ones out ofi flip to zero andi − k ones are not flipped’ andBijk the
event that ‘k + j − i zeros out of̀ − i flip to one and̀ − j − k zeros are not flipped’. Note that both
events are independent. The probabilities of these events are

P{Aik} =
(
i

k

)
pk(1− p)i−k and P{Bijk} =

(
`− i

k + j − i
)
pk+j−i (1− p)`−j−k.

Thus, the probability to transition from statei to j is the sum overk of the product of the probabilities of
both events(0≤ i < j ≤ `):

pij =
∑̀
k=0

P{Aik} · P{Bijk}

=
∑̀
k=0

(
i

k

)
pk(1− p)i−k ·

(
`− i

k + j − i
)
pk+j−i (1− p)`−j−k

=
∑̀
k=0

(
i

k

)(
`− i

k + j − i
)
p2k+j−i (1− p)`+i−j−2k

= pj−i (1− p)`−(j−i)
∑̀
k=0

(
i

k

)(
`− i

k + j − i
)(

p

1− p
)2k

. (B2.4.73)

This formula is equivalent to that of B̈ack (1992, p 88). The last nonzero term of the series in (B2.4.73)
is that with indexk = min{i, `− j}. For larger indices at least one of the binomial coefficients becomes
zero. This reflects the fact that some of the events are impossible: for example, the eventAik can not
occur if k > i because one cannot flipk ones when there are onlyi. Since the Markov chain stays in its
current state if mutation has generated a state of worse or equal quality the probabilities of staying are

pii = 1−
∑̀
j=i+1

pij
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for 0 ≤ i < `. Clearly,p`` = 1. Since all other entries are zero the transition matrixP = (pij ) has been
derived completely.

Now we are in the position to use the technique described previously. Mühlenbein (1992) used a
similar method to attack this problem: in principle, he also converted the exact Markov chain to another
one, that always performs less well than the original one but which is much simpler to analyze. Actually,
his analysis was a pure approximation without taking into account whether the approximations yielded a
lower or upper bound of the expected absorption time. However it will be shown in the following that
this approach leads to an upper bound of the expectation of the first hitting time.

In the third step the original Markov chain is approximated by a simpler one that has (provable)
worse performance. Recall that the key idea is to ignore all those paths that take shortcuts to state` by
jumping over some states in between. If the original Markov chain takes such a shortcut this move is
considered deteriorating in the approximating Markov chain and it stays at its current state. Consequently,
the approximating Markov chain needs more time to reach the absorbing state` on average. Moreover,
the approximating chain must pass all states greater than or equal toi to arrive at statè when being
started in statei < `.

Thus, one needs to know the transition probabilitiesqij of the simplified Markov chain. Actually, it
is sufficient to know the values forqi,i+1 with i = 0, . . . , `− 1. In this case (B2.4.73) reduces to

qi,i+1 = p (1− p)`−1
∑̀
k=0

(
i

k

)(
`− i
k + 1

)(
p

1− p
)2k

(B2.4.74)

≥ p (1− p)`−1(`− i). (B2.4.75)

Expression (B2.4.74) is still too complicated. Therefore it was bounded by (B2.4.75). In principle, the
approximating Markov chain was approximated again by a Markov chain with even worse performance:
the probabilities to transition to the next state were decreased so that this (third) Markov chain will take
an even longer time to reach state`. To determine the expected time until absorption insert (B2.4.75) into
(B2.4.72). This leads to

E[ T ] ≤
`−1∑
i=0

1

p (1− p)`−1(`− i) =
1

p (1− p)`−1

∑̀
i=1

1

i
≤ log`+ 1

p (1− p)`−1
. (B2.4.76)

Evidently, the absorption time depends on the mutation probabilityp ∈ (0, 1) and attains its minimum for
p∗ = 1/`. Then (B2.4.76) becomes (also see Mühlenbein 1992, p 19)

E[ T ] ≤ ` (log`+ 1)

(
1− 1

`

)1−`
≤ ` (log`+ 1) exp(1). (B2.4.77)

The bound (B2.4.77) is very close to the absorption time of the original Markov chain withp = 1/`. It
is clear that the optimal mutation probability for the original Markov chain will differ from 1/`, but the
difference is remarkably small as the numerical investigations of Bäck (1993) reveal.

B2.4.2.4 Unimodal binary functions

The notion ofunimodalfunctions usually appears in probability theory (to describe the shape of probability
density functions), nonlinear one-dimensional dynamics (to characterize the shapes of return maps) and
in the theory of optimization of one-dimensional functions with domainR. Since a commonly accepted
definition for unimodal functions inR` does not seem to exist, it comes as no surprise that the definition
of unimodality of function with domainB` is not unique in the literature either. Here, the following
definition will be used.

Definition B2.4.2.Let f be a real-valued function with domainB`. A point x∗ ∈ B` is called alocal
solution of f if

f (x∗) ≥ f (x) for all x ∈ {y ∈ B` : ‖y − x∗‖1 = 1}. (B2.4.78)

If the inequality in (B2.4.78) is strict, thenx∗ is termed astrictly local solution. The valuef (x∗) at a
(strictly) local solution is called a(strictly) local maximumof f . A function f : B` → R is said to be
unimodal, if there exists exactly one local solution. �
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Before determining the expected absorption time of a(1+ 1)-EA for this problem, it is useful to
know whether such problems are solvable in polynomial time at all. Johnsonet al (1988, p 86) have
shown that this problem cannot be NP hard unless NP= co-NP, an event which is commonly considered
very unlikely.

The ladder problemconsists of the task of finding the maximum of the unimodal binary function

f (x) =
∑̀
i=1

i∏
j=1

xj

which is attained if all entries in vectorx are set to1. The objective function counts the number of
consecutive1s in x from left to right. Note that this function is unimodal: choosex ∈ B` such that
x 6= x∗. It suffices to show that there exists a pointy ∈ B` with ‖x−y‖1 = 1 andf (y) > f (x). In fact,
this is true: sincex 6= x∗ there exists an indexk = min{i : xi = 0} ≤ `. Choosey ∈ B` such thatyi = xi
for all i ∈ {1, . . . , `}\ {k} andyk = 1. By construction one obtains‖x−y‖1 = 1 and finallyf (y) > f (x)
since the number of consecutive 1s iny is larger than the number of consecutive 1s inx. Consequently,
x∗ = (1 . . .1)′ is the only point at whichf attains a local maximum. Thereforef is unimodal.

To derive an upper bound on the expected number of steps to reach the global maximum consider
the following decomposition of the search space: defineSi := {x ∈ B` : f (x) = i} for i = 0, 1, . . . , `.
For example, for̀ = 4 one obtains

S0 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111}
S1 = {1000, 1001, 1010, 1011}
S2 = {1100, 1101}
S3 = {1110}
S4 = {1111}.

Thus, if x ∈ Si then the firsti bits are set correctly. Note that this grouping of states is not suited to
formulate a Markov chain model with̀+ 1 states that is equivalent to a model with 2` states. But it is
possible to formulate a simplified Markov chain model with`+ 1 states that has worse performance than
the true model. To this end assumex ∈ S0. SubsetS0 only can be left if the first entry mutates from
zero to one. If this event occurs the Markov chain is at least in subsetS1. But it may also happen that
the Markov chain transitions to any other subsetSi with i > 1. In the simplified model these events are
not allowed: all transitions fromS0 to Si with i > 1 are considered as transitions toS1. SubsetS1 can be
left only if the first entry does not mutate and the second entry flips from zero to one. In this case the
Markov chain transitions at least to subsetS2. All transitions to subsetSi with i > 2 are considered as
transitions toS2. Analogous simplifications apply to the other subsetsSi . Since all shortcuts on the path
to S` are bent back to a transition of the typeSi to Si+1 the expected number of trials of the simplified
Markov chain is larger than the expected number of trials of the original Markov chain. The state space of
the simplified Markov chain isS = {0, 1, . . . , `} where statei ∈ S represents subsetSi . The only possible
path from state 0 to statè must visit all states in between in ascending order. Thus, the probability
pi,i+1 to transition from statei to i + 1 for i < ` is the probability to flip entryi + 1 multiplied by the
(independent) probability that the firsti entries remain unchanged. Thus,

pi,i+1 = p(1− p)i

wherep ∈ (0, 1) denotes the probability to flip from0 to 1 and vice versa. The expected number of steps
to reach the optimum is

E[ T0,` ] =
`−1∑
i=0

E[ Ti,i+1 ] =
`−1∑
i=0

1

pi,i+1
= 1

p

`−1∑
i=0

(
1

1− p
)i
= 1− p

p2
[ (1− p)−` − 1 ]. (B2.4.79)

Now insist thatp = c/` with 0< c < `. Insertion into (B2.4.79) leads to

E[ T0,` ] = `2

c2

(
1− c

`

) [(
1− c

`

)−`
− 1

]
≤ `2 e

c − 1

c2
(B2.4.80)

where the rightmost expression attains its minimum forc ≈ 1.6. In summary, it has been shown that the
expected number of steps of the(1+ 1)-EA can be bounded by O(`2).
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LetF = {f (x) : x ∈ B`} be the set of function values of a unimodal functionf . If the cardinality ofF
is bounded by a polynomial iǹ, then it is guaranteed that the(1+1)-EA will be absorbed at the local/global
solution after polynomially many trials on average, because only polynomially many improvements via
one-bit mutations are possible and sufficient to reach the optimum. Such a problem was considered in
the preceding example. Therefore, these problems can be excluded from further considerations. Rather,
unimodal problems with|F | = �(2`) are the interesting candidates.

By definition, each unimodal problem has at least one path to the optimum with strictly increasing
function values, where consecutive points on the path differ in one bit only. Since the expected time to
change a single specific bit is less thane`, an upper bound on the absorption time is the length of the path
timese`. Horn et al (1994) succeeded in constructing paths that grow exponentially in` and can be used
to build unimodal problems. Consequently, the upper bound derived by the above reasoning either is too
rough or indicates that polynomial bounds do not exist. It is clear that such a ‘long path’ must possess
much structure, because the one-bit path has to be folded several times to fit into ‘box’B`. One might
suspect that there exist many shortcuts, by appropriate two-bit mutations, that decrease the order of the
upper bound considerably. In fact, this is true. Since the analysis is quite involved only the result will
be reported: the exponentially longroot2-path is maximized after O(`3) function evaluations on average
(see Rudolph 1996).

B2.4.2.5 Supermodular functions

Definition B2.4.3.A function f : B`→ R is said to besupermodularif

f (x ∧ y)+ f (x ∨ y) ≥ f (x)+ f (y) (B2.4.81)

for all x,y ∈ B`. If the inequality in (B2.4.81) is reversed, thenf is calledsubmodular. �
Evidently, iff (x) is supermodular theng(x) := a+bf (x) with a ∈ R andb ∈ R\{0} is supermodular

for b > 0 and submodular forb < 0. Thus, maximization of supermodular functions is of the same
difficulty as the minimization of submodular functions. For this problem class there exists a strong result.

Theorem B2.4.1 (Gr¨otschel et al 1993, pp 310–11).Each supermodular functionf : B` → Q can be
globally maximized in strongly polynomial time. �

As will be shown, it is impossible to obtain an upper boundT̂ on the expectation of the first hitting
time that is polynomial iǹ .

Theorem B2.4.2.There exist supermodular functions that cannot be maximized by a(1+ 1)-EA with a
number of mutations that is upper bounded by a polynomial in`.

Proof. Consider the objective function

f (x) =
{
`+ 1 if ‖x‖1 = `
`− ‖x‖1 if ‖x‖1 < `

(B2.4.82)

that is easily shown to be supermodular. The state space of the(1 + 1)-EA can be represented by
S = {0, 1, . . . , `} where each statei ∈ S represents the number of1s in vectorx ∈ B`. The absorbing
state is statè. It can be reached from statei ∈ {0, 1, . . . , `− 1} within one step with probability

pi` = p`−i (1− p)i.

Let the Markov chain be in some statei ∈ {0, . . . , `− 1}. Only transitions to some statej < i or to state
` are possible. If the Markov chain transitions to statej < i, then the probability to transition to state
` has become smaller. Thus, it would be better to stay at statei than to move to statej < i although
the objective function value of statej is better than the objective function value of statei. This leads to
the simplified Markov chain that has better performance than the original one. Thenpii = 1− pi` and
the simplified Markov chain is described completely. Thus, the expected time to transition to state` from
statei < ` is

E[ Ti,` ] = 1

pi`
= 1

p`−i (1− p)i = `
`

(
1

`− 1

)i
≥ ``−i .
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Assuming that the initial point is drawn from a uniform distribution overB` the average time to absorption
is larger than

2−`
`−1∑
i=0

(
`

i

)
E[ Ti,` ] ≥ 2−`

`−1∑
i=0

(
`

i

)
``−i =

(
`

2

)` `−1∑
i=0

(
`

i

)(
1

`

)i
=
(
`+ 1

2

)`
− 2−`.

Since the lower bound on the absorption time is exponential in` for ` ≥ 2 the proof is completed. �
Of course, this result does not imply that a GA must fail to solve this problem in a polynomially bounded
number of generations. It may be that some crossover operator can help. But note that the objective
function (B2.4.82) isfully deceptiveas can be easily verified owing to the sufficient conditions presentedB2.7.1

by Deb and Goldberg (1994). Fully deceptive functions are the standard examples to show (empirically)
that a GA fails.

B2.4.2.6 Almost-positive functions

Theorem B2.4.3 (Hansen and Simeone 1986, p 270).The maximum of an almost-positive pseudo-Boolean
function (i.e. the coefficients of all nonlinear terms are nonnegative) can be determined in strongly
polynomial time. �

Theorem B2.4.4. There exist supermodular functions that cannot be maximized by a(1+ 1)-EA with a
number of mutations that is upper bounded by a polynomial in`.

Proof. Theorem B2.4.2 has shown that the objective function in equation (B2.4.82) cannot be maximized
by a number of mutations that is upper bounded by a polynomial in`. Note that the function in (B2.4.82)
has the alternative representation

f (x) = `−
∑̀
i=1

xi + (`+ 1)
∏̀
i=1

xi

revealing that this function is also almost positive. This completes the proof. �
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Iosifescu M 1980Finite Markov Processes and Their Applications(Chichester: Wiley)
Johnson D S, Papadimitriou C H and Yannakakis M 1988 How easy is local search?J. Comput. Syst. Sci.37 79–100
Mühlenbein H 1992 How genetic algorithms really work: mutation and hillclimbingParallel Problem Solving from

Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, 1992)ed R Männer and
B Manderick (Amsterdam: North-Holland) pp 15–25

Mühlenbein H and Schlierkamp-Voosen D 1993 Predictive models for the breeder genetic algorithmEvolutionary
Comput.1 25–49

Rechenberg I 1994Evolutionsstrategie ’94(Stuttgart: Frommann-Holzboog)
Rudolph G 1996 How mutation and selection solve long path problems in polynomial expected timeEvolutionary

Comput.4 at press
Schwefel H-P 1995Evolution and Optimum Seeking(New York: Wiley)

Further reading

1. Arnold B C, Balakrishnan N and Nagaraja H N 1992A First Course in Order Statistics(New York: Wiley)

As does the book of David (1970), this course gives a good introduction into order statistics, which builds the
mathematical basis for truncation selection.

2. Beyer H-G 1992Towards a Theory of ‘Evolution Strategies’. Some Asymptotical Results from the(1 +, λ)-Theory
Department of Computer Science Technical Report SYS-5/92, University of Dortmund

In this report the derivations for the(1 +, λ) theory on noisy fitness data can be found.

3. Beyer H-G 1994Towards a Theory of ‘Evolution Strategies’: Results from theN -dependent(µ, λ) and the
Multi-Recombinant(µ/µ, λ) Theory Department of Computer Science Technical Report SYS-5/94, University
of Dortmund

This report contains the ‘hairy details’ of the progress rate theory for(µ, λ) and (µ/µ, λ) ESs as well as the
derivations for the differential geometry approach.

4. Beyer H-G 1995Towards a Theory of ‘Evolution Strategies’: the(1, λ)-Self-AdaptationDepartment of Computer
Science Technical Report SYS-1/95, University of Dortmund

This report is devoted to the theory of(1, λ) σ selfadaptation and contains the derivations of the results presented
in the article by Beyer (1996).

5. Michod R E and Levin B R (eds) 1988The Evolution of Sex: an Examination of Current Ideas(Sunderland,
MA: Sinauer)

Concerning the current ideas on the benefits of recombination in biology, this book reflects the different
hypotheses on the evolution of sex. Biological arguments and theories should receive more attention within
the EA theory.
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