Local performance measures

That is, forr — oo a residual distance to the optimum point remains. In other wards,strategies
without o control are not function optimizerghey do not converge to the optimum.
For example, consider th@g:, A) ES. From equation (B2.4.53) one obtains

on
(1, A) ES, o = constant> 0: o5 = 2, = Foo =

(B2.4.70)
26',,”)L

Similar results can be obtained (or observed in simulations) fof,allstrategies including bitstring
optimizations (forp, = constant> 0, see e.g. th@neMax @1, = Q1 (B2.4.41)) and combinatorial
problems (e.g. ordering problems; see Section G4.2). G4.2

B2.4.2 Genetic algorithms
Glnter Rudolph

Abstract

The expectation of the random time at which a genetic algorithm (GA) detects the global
solution or some other element of a distinguished set for the first time represents a useful
global performance measure for the GA. In this section it is shown how to deduce bounds
on the global performance measure from local performance measures in the case of GAs
with elitist selection, mutation, and crossover.

B2.4.2.1 Global performance measures

Let the tupleP; = (X,(l), cees X,(‘“) denote the random population pf < oo individuals at generation

t > 0 with X € B = {0,1}¢ for i = 1,..., 1. Assume that the genetic algorithm (GA) is used to
find a global solutionz* e B’ at which the objective functiorf : B¢ — R attains its global maximum
f@*) = f* =max f(x) : ¢ € B}. The best objective function value of a populatiBnat generation

t > 0 can be extracted via the mapping

foP) =max f(X):i=1,.... p}

Then the random variable
T =min{r > 0: fo(P) = f*}

denotes thdirst hitting timeof the GA. Assume that the expectation®fcan be bounded ViE[ T ] < T 8222
whereT is a polynomial in the problem dimensidn If the GA is stopped after T steps withc > 2 one
cannot be sure in general whether the best solution found is the global solution or not. The probability
that the candidate solution is not the global solutioR{& > ¢ T'} which can be bounded via the Markov
inequality yielding R

T 1 1
< —==- =<z
cT 2

c

After k independent runs (with different random seeds) the probability that the global solution has
been found at least once is larger than or equalta1*. For example, after 20 runs with= 2 (possibly
in parallel) the probability that the global solution has not been found is less th&n 10

If such a polynomial bound” existed for some evolutionary algorithm and a class of optimization
problems whose associated decision problem is nondeterministic polynomial-time (NP) complete, every
optimization problem of this difficulty could be treated with this fictitious evolutionary algorithm in a
similar manner. In fact, for the field of evolutionary algorithms this would be a pleasant result, but such
a result is quite unlikely to hold.

B2.4.2.2 Deducing the global performance measure from the local performance measure

The moments of the first hitting time can be calculated from the transition matrix dfigr&ov chain B2.2.2
associated with the GA and the objective function under consideration. Unless the transition matrix is
sparsely filled the practical application of the formulas given by losifescu (1980, pp 104, 133) is usually
excluded.
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The general idea to circumvent this problem is as follows. $et B’ x --- x B = (B‘)* be the
state spacef the Markov chain. Then each elementc S represents a potential population that can dee 2
attained by the GA in the course of the search. Notice that it is always possible to decompose the state
space into: subsets via

s=Js with $nS;=p for i#;
i=1

with the property
Ve e S :VyeS;ti<j= fo@) < foly).

If the GA employselitist selectionit is guaranteed that a population in subSgtwill never transition to c2.7.4
a population represented by a state in some suf)setth i < j. Thus, the Markov chain moves through
the setsS; with ascending index. In general, this grouping of the states does not constitute a Markov
chain whose states are represented by the $efsee losifescu 1980, pp 166-70). In this case one has
to determine a lower bound on the probabilities to transition from some arbitrary elemépttanan
arbitrary element ir§;. These lower bounded probabilities represent the transition probabijiii¢sr the
grouped Markov chain to transition from st to S;. After the probabilitiesp;; have been determined

for j =i+ 1, ..., n the setting
pi=1- Z Pij

j=i+1
ensures that the row sums of the transition matrix of the grouped Markov chain are unity.
If the mutation of an individual is realized by inverting each bit with sometation probability c3.2.1
p € (0, 1) then there exist nonzero transition probabilities to move fromSseb S; for all indicesi, j
with 1 <i < j < n. This Markov chain can be simplified by setting

n
qii = pii + Z Dij

j=it2
qii+1 = Di,i+1
gii+k =0 fork>2andi +k<n
qij = 0 forj <.
Thus, only transitions from the s8tto S; ;1 fori = 1, ..., n—1 are considered—the remaining improving

transitions are ignored by bending them back to sfatdvidently, this simplified Markov chain must have

a worse performance than the original Markov chain, but its simple structure allows an easy determination
of the first hitting time representing an upper bound on the first hitting time of the original chain. To this
end, letT;; denote the random time that is necessary to transition frons;getS;. Then the expectation

of T is bounded by

n—1
E[T] <) E[Tiin] (B2.4.71)
i=1

Evidently, the probability distribution of random variable;,1 is geometric with probability density
function

P{Tiisi=1}=qiir1(1—qiiy)" "
and expectatiorE[ 7; ;1] = 1/¢:.;+1. Consequently, the expectation of the first hitting tifief the GA

can bounded by
n—1
E[T] < .
; qi.i+1

(B2.4.72)

It is not guaranteed that this approach will always lead to sharp bounds. The manner in which the state
space is decomposed determines the quality of the bounds. Unfortunately, there is currently no guideline
helping to decide which partitioning will be appropriate. The following examples will offer the opportunity

to gain some experience, but before beginning the examples notice that it can be sufficient to analyze the
(14+1) GA with mutation and elitist selection to obtain an upper bound of the first hitting time: an ordinary
GA with elitist selection, mutation, and crossover is at least as fas{hs-4) GA with the same mutation
probability. Thus, the potential improving effects of crossover will be ignored. This can lead to weak
bounds—nbut as long as the bounds are polynomially boundédtiis approach is reasonable.
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B2.4.2.3 Linear binary problems

Definition B2.4.1.A function f : B — R is calledlinear if it is representable via

¢
f(x) =ao+ Zaixi
i—1

i=

with e B anda; e Rfori =0,1,..., £. O

The so-calleccounting ones probleroonsists of the task of finding the maximum of the linear function

[4
f@ =Y x
i=1

that is attained if all entries in vectar are set tol. Back (1992) investigated this problem fora+ 1)

GA with mutations as described previously and derived the transition probabilities for the Markov chain
while Miulhlenbein (1992) succeeded in calculating an approximation of the expected number of function
evaluations needed to reach the optimum.

The first step of the analysis is to reduce the state space of the Markov chain by an appropriate
grouping of states: to this end note that there é)estates withi ones that can be grouped into one
state because the specific instantiation of the vector with exaches is not important—the probability
of transition to any other state only depends on the number of ones (or zeros). Thus, the states of the
grouped Markov chain represent the number of ones. This reduces the cardinality of the state space from
2° to £ + 1: the Markov chain is in statee {0, 1, ..., £} if there are exactly ones in the current vector.
Consequently, one would like to know the expected time to reach &tate

The next step consists of the determination of the transition probabilities. Since the algorithm only
accepts improvements it is sufficient to know the transition probabilities from somei datgome state
Jj > i. Let A;; be the event thatk' ones out ofi flip to zero andi — k ones are not flipped’ and;;; the
event that k 4+ j — i zeros out of¢ — i flip to one and¢ — j — k zeros are not flipped’. Note that both
events are independent. The probabilities of these events are

i

P{Ay} = <k

. L —1 . .
k 1— i—k P!(B:. — k+j—i 1— Z—]—k.
)p 1-p and  P{B} <k+j _l.>p 1-p

Thus, the probability to transition from statdo j is the sum ovek of the product of the probabilities of
both event§0 <i < j < ¥):

¢
pij = Z P{Ai} - P{Bijt}
=0

- i k i—k t—i k+j—i L—j—k
—Z<k>p 1-p) -(k+j_l.>p TA=-p

k=0

4 . .
i £—i 2kt i i 2k
— i(1— i—j
Z<k><k+j—i)p =p

k=0

. I iNS =i 2
— pi-i(1 — C—(j—i) (l>( ) (L) . B2.4.73
pd=p) Zkzo k)\k+j—i)\1-p ( )

This formula is equivalent to that of &k (1992, p 88). The last nonzero term of the series in (B2.4.73)
is that with indexk = min{i, £ — j}. For larger indices at least one of the binomial coefficients becomes
zero. This reflects the fact that some of the events are impossible: for example, theAgveah not
occur if k > i because one cannot flipones when there are only Since the Markov chain stays in its
current state if mutation has generated a state of worse or equal quality the probabilities of staying are

¢
pii=1-— Z Dij

j=i+1
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for 0 <i < £. Clearly, p,, = 1. Since all other entries are zero the transition me®rix (p;;) has been
derived completely.

Now we are in the position to use the technique described previouslihldvibein (1992) used a
similar method to attack this problem: in principle, he also converted the exact Markov chain to another
one, that always performs less well than the original one but which is much simpler to analyze. Actually,
his analysis was a pure approximation without taking into account whether the approximations yielded a
lower or upper bound of the expected absorption time. However it will be shown in the following that
this approach leads to an upper bound of the expectation of the first hitting time.

In the third step the original Markov chain is approximated by a simpler one that has (provable)
worse performance. Recall that the key idea is to ignore all those paths that take shortcuts édogtate
jumping over some states in between. If the original Markov chain takes such a shortcut this move is
considered deteriorating in the approximating Markov chain and it stays at its current state. Consequently,
the approximating Markov chain needs more time to reach the absorbing¢ stat@verage. Moreover,
the approximating chain must pass all states greater than or equabtarrive at state when being
started in stateé < ¢.

Thus, one needs to know the transition probabilitjgsof the simplified Markov chain. Actually, it

is sufficient to know the values faf; ;.1 withi =0, ..., ¢ — 1. In this case (B2.4.73) reduces to
—pa— (T (-2 : (B2.4.74)
di,i+1 =P p ~ k k41 1—[7 4.
>pA-p)te—i). (B2.4.75)

Expression (B2.4.74) is still too complicated. Therefore it was bounded by (B2.4.75). In principle, the
approximating Markov chain was approximated again by a Markov chain with even worse performance:
the probabilities to transition to the next state were decreased so that this (third) Markov chain will take
an even longer time to reach stdteTo determine the expected time until absorption insert (B2.4.75) into
(B2.4.72). This leads to

S 1 1 ‘1 logl+1
E[T] < ; Py R 7 ey ;7 Y e (B2.4.76)

Evidently, the absorption time depends on the mutation probability(0, 1) and attains its minimum for
p* =1/¢. Then (B2.4.76) becomes (also seétNenbein 1992, p 19)

1-¢
E[T] <¢(ogt+ 1) (1 — %) < £ (log? + 1) exp1). (B2.4.77)

The bound (B2.4.77) is very close to the absorption time of the original Markov chainpadthl/¢. It
is clear that the optimal mutation probability for the original Markov chain will differ fropd,lbut the
difference is remarkably small as the numerical investigationsaamkR1993) reveal.

B2.4.2.4 Unimodal binary functions

The notion ofunimodalfunctions usually appears in probability theory (to describe the shape of probability
density functions), nonlinear one-dimensional dynamics (to characterize the shapes of return maps) and
in the theory of optimization of one-dimensional functions with donmR&inSince a commonly accepted
definition for unimodal functions ifR¢ does not seem to exist, it comes as no surprise that the definition

of unimodality of function with domairB¢ is not unique in the literature either. Here, the following
definition will be used.

Definition B2.4.2.Let f be a real-valued function with domai®’. A point =* € B is called alocal
solution of f if
fx*) > f(x) forall z e {y e B : |ly — ¥l = 1). (B2.4.78)

If the inequality in (B2.4.78) is strict, them* is termed astrictly local solution The valuef(z*) at a
(strictly) local solution is called gstrictly) local maximumof f. A function f : B¢ — R is said to be
unimodal if there exists exactly one local solution. O
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Before determining the expected absorption time afla- 1)-EA for this problem, it is useful to
know whether such problems are solvable in polynomial time at all. Johesah (1988, p 86) have
shown that this problem cannot be NP hard unless=Né®d-NP, an event which is commonly considered
very unlikely.

The ladder problemconsists of the task of finding the maximum of the unimodal binary function

fl@) = Zl_[xj

i=1 j=

which is attained if all entries in vectar are set tol. The objective function counts the number of
consecutivets in x from left to right. Note that this function is unimodal: choosec B‘ such that
x # x*. It suffices to show that there exists a pojng B¢ with ||z — y||; = 1 and f(y) > f(x). In fact,
this is true: sincer # x* there exists an indek = min{i : x; = 0} < £. Choosey € B‘ such thaty; = x;
foralli € {1,...,¢}\{k} andy, = 1. By construction one obtainjgc — y||1 = 1 and finally f (y) > f(x)
since the number of consecutive 1syris larger than the number of consecutive 1scinConsequently,

= (1...1) is the only point at whichf attains a local maximum. Thereforgis unimodal.

To derive an upper bound on the expected number of steps to reach the global maximum consider

the following decomposition of the search space: define= {xr € B : f(x) =i} fori =0,1,...,¢.
For example, for = 4 one obtains

So = {000Q 0001,001Q 0011, 0100 0101,011Q0 0111

S; = {100Q 1001 101Q 1011
S, = {110Q 1101

Ss = {1110

S, = {1111

Thus, if x € §; then the firsti bits are set correctly. Note that this grouping of states is not suited to
formulate a Markov chain model with+ 1 states that is equivalent to a model with2ates. But it is
possible to formulate a simplified Markov chain model with- 1 states that has worse performance than
the true model. To this end assuneec So. SubsetSy only can be left if the first entry mutates from
zero to one. If this event occurs the Markov chain is at least in sufaseBut it may also happen that

the Markov chain transitions to any other subSetvith i > 1. In the simplified model these events are

not allowed: all transitions fron§y to S; with i > 1 are considered as transitionsSa SubsetS; can be

left only if the first entry does not mutate and the second entry flips from zero to one. In this case the
Markov chain transitions at least to subset All transitions to subse§; with i > 2 are considered as
transitions toS,. Analogous simplifications apply to the other subsgtsSince all shortcuts on the path

to S, are bent back to a transition of the tySeto S;.; the expected number of trials of the simplified
Markov chain is larger than the expected number of trials of the original Markov chain. The state space of
the simplified Markov chain is = {0, 1, ..., £} where state € S represents subsét. The only possible

path from state O to staté must visit all states in between in ascending order. Thus, the probability
pi.i+1 o transition from staté to i + 1 for i < £ is the probability to flip entryi + 1 multiplied by the
(independent) probability that the firsentries remain unchanged. Thus,

piiv1=p(l—p)

wherep € (0, 1) denotes the probability to flip frord to 1 and vice versa. The expected number of steps
to reach the optimum is

-1 -1 -1 i
14 1-
E[To] =) E[Tia]l=Y —— == ( ) Lra-pt-11 (82479
i—0 i—o Pii+1 P 0 p
Now insist thatp = ¢/¢ with 0 < ¢ < £. Insertion into (B2.4.79) leads to
22 c c\—¢ ,ef—1
E[To.] = (1-7) [(1— ) - 1} <0 — (B2.4.80)

where the rightmost expression attains its minimumdet 1.6. In summary, it has been shown that the
expected number of steps of tiie+ 1)-EA can be bounded by @°).
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Let F = {f(x) : = € B*} be the set of function values of a unimodal functipnlf the cardinality of F
is bounded by a polynomial iy then it is guaranteed that tiig+1)-EA will be absorbed at the local/global
solution after polynomially many trials on average, because only polynomially many improvements via
one-bit mutations are possible and sufficient to reach the optimum. Such a problem was considered in
the preceding example. Therefore, these problems can be excluded from further considerations. Rather,
unimodal problems withF| = ©(2%) are the interesting candidates.

By definition, each unimodal problem has at least one path to the optimum with strictly increasing
function values, where consecutive points on the path differ in one bit only. Since the expected time to
change a single specific bit is less thai an upper bound on the absorption time is the length of the path
timesef. Hornet al (1994) succeeded in constructing paths that grow exponentiallyaimd can be used
to build unimodal problems. Consequently, the upper bound derived by the above reasoning either is too
rough or indicates that polynomial bounds do not exist. It is clear that such a ‘long path’ must possess
much structure, because the one-bit path has to be folded several times to fit intd®‘bo®ne might
suspect that there exist many shortcuts, by appropriate two-bit mutations, that decrease the order of the
upper bound considerably. In fact, this is true. Since the analysis is quite involved only the result will
be reported: the exponentially longot2-path is maximized after @%) function evaluations on average
(see Rudolph 1996).

B2.4.2.5 Supermodular functions

Definition B2.4.3.A function f : B — R is said to besupermodularif

flenrny) + f@Vvy = f@)+ f(y) (B2.4.81)

for all z, y € B®. If the inequality in (B2.4.81) is reversed, thghis calledsubmodular O

Evidently, if f(x) is supermodular theg(x) := a+bf (x) with a € R andb € R\ {0} is supermodular
for b > 0 and submodular fob < 0. Thus, maximization of supermodular functions is of the same
difficulty as the minimization of submodular functions. For this problem class there exists a strong result.

Theorem B2.4.1 (@tschel et al 1993, pp 310-11Fach supermodular functiorf : B — Q can be
globally maximized in strongly polynomial time. O

As will be shown, it is impossible to obtain an upper boudhan the expectation of the first hitting
time that is polynomial ir¢.

Theorem B2.4.2There exist supermodular functions that cannot be maximized {y+al)-EA with a
number of mutations that is upper bounded by a polynomidl in

Proof. Consider the objective function

€=zl if ) <€ (B2.4.82)

fx) = {
that is easily shown to be supermodular. The state space oflthel)-EA can be represented by
S =1{0,1,..., ¢} where each state € S represents the number a6 in vectorz € B¢. The absorbing
state is staté. It can be reached from states {0, 1, ..., £ — 1} within one step with probability

pie=p"" (1-p).

Let the Markov chain be in some state {0, ..., ¢ — 1}. Only transitions to some stafe< i or to state

¢ are possible. If the Markov chain transitions to state: i, then the probability to transition to state
£ has become smaller. Thus, it would be better to stay at sttan to move to stat¢ < i although
the objective function value of stateis better than the objective function value of stateThis leads to
the simplified Markov chain that has better performance than the original one. g:henl — p;, and
the simplified Markov chain is described completely. Thus, the expected time to transition t6 ftate
statei < £ is

E[T.] = L B—— (i> >
pie  p~(L-p) -1

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.425



Local performance measures

Assuming that the initial point is drawn from a uniform distribution oérthe average time to absorption
is larger than

r g (o= R ()= () ZO6) - (%) =

Since the lower bound on the absorption time is exponentiélfor £ > 2 the proof is completed. O

Of course, this result does not imply that a GA must fail to solve this problem in a polynomially bounded
number of generations. It may be that some crossover operator can help. But note that the objective
function (B2.4.82) idully deceptiveas can be easily verified owing to the sufficient conditions presemted:
by Deb and Goldberg (1994). Fully deceptive functions are the standard examples to show (empirically)
that a GA fails.

B2.4.2.6 Almost-positive functions

Theorem B2.4.3 (Hansen and Simeone 1986, p 27Dhe maximum of an almost-positive pseudo-Boolean
function (i.e. the coefficients of all nonlinear terms are nonnegative) can be determined in strongly
polynomial time. O

Theorem B2.4.4. There exist supermodular functions that cannot be maximized @iy+al)-EA with a
number of mutations that is upper bounded by a polynomidl in

Proof. Theorem B2.4.2 has shown that the objective function in equation (B2.4.82) cannot be maximized
by a number of mutations that is upper bounded by a polynomiél Mote that the function in (B2.4.82)
has the alternative representation

4 4
f@=t=Y x+¢+D[]x
i=1 i=1
revealing that this function is also almost positive. This completes the proof. O
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Concerning the current ideas on the benefits of recombination in biology, this book reflects the different
hypotheses on the evolution of sex. Biological arguments and theories should receive more attention within
the EA theory.
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