Table of Contents
Dr. Bernd Zey
Outdated Informations
Chair of Algorithm Engineering
Department of Computer Science
TU Dortmund
Room: | 238 |
Phone: | +49 231 755-7735 |
Fax: | +49 231 755-7740 |
E-Mail: | bernd.zeytu-dortmund.de |
Orcid | Orcid ID |
Research
- Research interests
- Algorithm Engineering
- Combinatorial Optimization
- Graph Algorithms, Network Design Problems (in particular Steiner tree and Steiner forest problems)
- Stochastic (Integer) Programming, (2-Stage) Branch&Cut, (Integer) L-Shaped Method
- Projects
- Stochastic Steiner Tree Problem Webpage - containing instances from the SSTPLib
- Stochastic Network Design Problem Webpage - containing instances from the SSNDPLib
Publications
Refereed Conference Proceedings
- Augmenting Graphs with Maximal Matchings
Maike Buchin, Antonia Kalb, Bernd Zey
European Workshop on Computational Geometry (EuroCG), 2022
- An exact algorithm for the Steiner forest problem
Daniel Schmidt, Bernd Zey, and Francois Margot
European Symposium on Algorithms (ESA), Leibniz International Proceedings in Informatics (LIPIcs), pp. 70:1-70:14, 2018, awarded ESA track B best paper
- Stochastic Survivable Network Design Problems
Ivana Ljubic, Petra Mutzel, and Bernd Zey
International Network Optimization Conference (INOC)
Electronic Notes in Discrete Mathematics (ENDM), 2013, pp.245-252
- Parameterized Algorithms for Stochastic Steiner Tree Problems
Denis Kurz, Petra Mutzel, and Bernd Zey
Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS 2012)
Lecture Notes in Computer Science 7721, Springer-Verlag, 2013, pp.143-154
- The Stochastic Steiner Tree Problem on Partial k-Trees
Fritz Boekler, Petra Mutzel, and Bernd Zey
Proceedings of the Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS) 2012, NOVPRESS Brno, October 2012
- Improved Steiner Tree Algorithms for Bounded Treewidth
Markus Chimani, Petra Mutzel, and Bernd Zey
International Workshop on Combinatorial Algorithms (IWOCA 2011)
Lecture Notes in Computer Science 7056, Springer-Verlag, 2011, pp. 374-386.
- Solving Two-Stage Stochastic Steiner Tree Problems by Two-Stage Branch-and-Cut
Immanuel Bomze, Markus Chimani, Michael Jünger, Ivana Ljubic, Petra Mutzel, and Bernd Zey
in: 21st International Symposium on Algorithms and Computation (ISAAC 2010)
Lecture Notes in Computer Science 6506, Springer-Verlag, 2010, pp. 427-439
- Planar Biconnectivity Augmentation With Fixed Embedding
Carsten Gutwenger, Petra Mutzel, and Bernd Zey
in: 20th International Workshop on Combinatorial Algorithms 2009 (IWOCA 2009)
Lecture Notes in Computer Science 5874, Springer-Verlag, 2009, pp. 289-300
- On the Hardness and Approximability of Planar Biconnectivity Augmentation
Carsten Gutwenger, Petra Mutzel, and Bernd Zey
in: 15th Annual International Computing and Combinatorics Conference 2009 (COCOON 2009)
Lecture Notes in Computer Science 5609, Springer-Verlag, 2009, pp. 249-257
Journal Articles
- Stronger MIP formulations for the Steiner forest problem
Daniel Schmidt, Bernd Zey, Francois Margot,
Mathematical Programming (Series A), 2020
- Stochastic Survivable Network Design Problems: Theory and practice
Ivana Ljubic, Petra Mutzel, and Bernd Zey
European Journal of Operational Research (EJOR), volume 256, issue 2, 2017, pp. 333-348
- Improved Steiner Tree Algorithms for Bounded Treewidth
Markus Chimani, Petra Mutzel, and Bernd Zey
Journal of Discrete Algorithms, 2012, pp. 67-78
Technical Reports
- MIP Formulations for the Steiner Forest Problem
Daniel Schmidt, Bernd Zey, Francois Margot
arXiv:1709.01124 [cs.DM], 2017. pp. 1-31
- ILP formulations for the two-stage stochastic Steiner tree problem
Bernd Zey
arXiv:1611.04324 [cs.DM], 2016, pp. 1-22
- Stochastic Survivable Network Design Problems
Ivana Ljubic, Petra Mutzel, and Bernd Zey, algorithm engineering report TR12-1-003, 2012. Visit our stoch. network design webpage for further informations
- TR 2010–03: Solving Two-Stage Stochastic Steiner Tree Problems by Two-Stage Branch-and-Cut
Immanuel Bomze, Markus Chimani, Michael Jünger, Ivana Ljubic, Petra Mutzel, Bernd Zey, 2010. Visit our SSTP webpage for further informations
Theses
- Solving Two-Stage Stochastic Network Design Problems to Optimality
Bernd Zey
PhD thesis, TU Dortmund, 2017 - TR09-09: Algorithms for Planar Graph Augmentation
Bernd Zey
Diploma Thesis (Master Thesis), TU Dortmund, 2008
Teaching/Lehre (in German)
- Sommersemester 2022
- Wintersemester 2021/2022
- Sommersemester 2021
- Wintersemester 2020/2021
- Sommersemester 2020
- Wintersemester 2019/2020
- Sommersemester 2019
- Wintersemester 2018/2019
- Sommersemester 2018
- Wintersemester 2017/2018
- Sommersemester 2017
- Wintersemester 2016/2017
- Sommersemester 2016
- Wintersemester 2015/2016
- Sommersemester 2015
- Wintersemester 2014/2015
- Sommersemester 2014
- Wintersemester 2013/2014
- Sommersemester 2013
- Wintersemester 2012/2013
- Sommersemester 2012
- Wintersemester 2011/2012
- Sommersemester 2011
- Wintersemester 2010/2011
- Sommersemester 2010
- Sommersemester 2009
- Diplom- und Master-StudentInnen
- Andreas Hörsken: Flexible Lösungsverfahren für Packungsprobleme in der auftragsbezogenen Kommissionierung, 05/2011
- Denis Kurz: Parameterized Algorithms for Stochastic Steiner Tree Problems, 01/2012
- Fritz Bökler: Algorithmen für das Stochastische Steinerbaumproblem auf Serien-Parallelen Graphen, 04/2012
- Carola Thalmann: Entwicklung von VSS-ähnlichen Bewertungsmethoden für das stochastische Steinerbaumproblem und deren Analyse, 09/2012
- Maximilian Ramke: Entwicklung primaler Heuristiken für das stochastische Steinerbaumproblem, 12/2012
- Daniel Kurowski: Vorverarbeitung für das Steinerwaldproblem, 2020
- Scarlett Gebski: Effiziente Implementierung verschiedener Varianten des Weisfeiler-Leman-Algorithmus, 2020
- Timm Grote: Lokale Algorithmen für die Färbung beschränkter Graphklassen, 2021
- Antonia Kalb: Graph-Augmentierung mit kompatiblen Matchings, 2021
- Bachelor-StudentInnen
- Mirjam Koch: Analyse der Terminplanung auf der endoskopischen Station des St. Anna Hospitals in Herne und Modellierung einer integrierbaren IT-Lösung, 11/2011
- Johannes Mundorf: Implementierung und Evaluierung flussbasierter ILP-Formulierungen für das Steinerwaldproblem, 07/2017
- Maurits Wrubel: Graph-Dekomposition für Max-Flow-Berechnungen, 2021
- Franziska Schmidt: Korrektur azyklischer Flüsse zur Reduktion maximaler Flüsse, 2022
- Mira Schwartz: Ganzzahlige lineare Programme für maximale geometrische Matchings, 2022
- Burak Özkan: Random Walks und deren Cover Time, 2022