Projektgruppe 642 (Sommersemester 2021)
Verteiltes Deep Reinforcement Learning System zum Trainieren von Game AI
Regelmäßiger betreuter Zeitraum
Mittwochs 11 - 12 Uhr
Discord
Ansonsten je nach Bedarf Termine mit den Betreuern vereinbaren.
Deadnline Abschlussbericht
31.03.2022
PG Richtlinien und Modulhandbuch
Seminartermine
Thema | Datum | Uhrzeit | Platform |
---|---|---|---|
Rainbow DQN | 15.04.21 | 14:00 Uhr | Zoom |
Soft Actor-Critic | 22.04.21 | 14:00 Uhr | |
Proximal Policy Optimization | 29.04.21 | 14:00 Uhr | |
Never Give Up | 06.05.21 | 14:00 Uhr |
Folien
Nr. | Thema | Download |
---|---|---|
1 | Kick-Off Meeting | PG642-Kick-Off.pdf |
2 | Projektmanagement Workshop Teil I | PG642-Projektmanagement-Workshop-1.pdf |
2 | Projektmanagement Workshop Teil II | PG642-Projektmanagement-Workshop-2.pdf |
3 | Projektmanagement Workshop Teil III | PG642-Projektmanagement-Workshop-3.pdf |
Praktikum
Nr. | Thema | Download |
---|---|---|
1 | DRL Umwelten | Praktikum_01_Folien.pdf Praktikum_01_Aufgaben.pdf |
2 & 3 | Experimente, LiDo 3 | Praktikum_02_Folien.pdf Praktikum_02_Aufgaben.pdf Datenpaket Google Colab |
4 | Testing, Debugging | praktikum_03.pdf |
Literatur
Bücher
- R. S. Sutton and A. G. Barto : “Reinforcement Learning: An Introduction”, MIT Press, Cambridge, 2018 (ISBN: 9780262039246)
- G. N. Yannakakis and J. Togelius : “Artificial Intelligence and Games”, Springer, 2018 (ISBN: 9783319635194)
- M. Lapan: “Deep Reinforcement Learning Hands-On”, Packt Publishing, 2018 (ISBN: 9781788834247)
- L. Graesser and W. L. Keng: “Foundations of Deep Reinforcement Learning”, Addison-Wesley Professional, 2019 (ISBN: 9780135172490)
- M. Morales: “grokking Deep Reinforcement Learning”, Manning Publications Co., 2020 (ISBN: 9781617295454)
Paper/Tutorials
- V. Mnih et al., “Human-level control through deep reinforcement learning”, Nat., vol. 518, no. 7540, pp. 529-533, 2015 K.Cobbe et al., “Leveraging procedural generation to benchmark reinforcement learning”, CoRR,vol. abs/1912.01588, 2019.
- A. Juliani et al., “Obstacle tower: A generalization challenge in vision, control, and planning”, in Proceedings IJCAI 2019, Macao, China (S. Kraus, ed.), pp. 2684-2691, ijcai.org, 2019.
- O. Vinyals et al., “Grandmaster level in starcraft II using multi-agent reinforcement learning”, Nat., vol. 575, no. 7782, pp. 350-354, 2019.
- C. Berner et al., “Dota 2 with large scale deep reinforcement learning”, CoRR, vol. abs/ 1912.06680, 2019.
- C. Hidber, “Reinforcement Learning: a gentle Introduction and industrial Application”, aufgerufen über https://youtu.b/3RjSanoNIlk am 14.12.2020, 2019.
- M. Andrychowicz et al., “Learning dexterous in-hand manipulation”, Int. J. Robotics Res., vol. 39, no. 1, 2020.
- M. G. Bellemare et al., “Autonomous navigation of stratospheric balloons using reinforcement learning”, Nat. vol. 588, pp.77-82, 2020.