PG 573: Blockseminar
Projektgruppen starten traditionell mit einem Blockseminar, das den Teilnehmern den Einstieg in das zugrundeliegende Thema erleichtern soll. Hier werden alle relevanten Informationen dazu gesammelt.
Fristen und Termine
Termin | Zeit |
---|---|
Besprechung des Folienkonzepts mit dem Betreuer | 25.02.-01.03.2013 |
Abgabe der Folien | 27.03.2013 |
Vorträge | 10./11.04.2013 im Raum U08, OH 16 |
Themenliste
Name | Titel | Zeit | |
---|---|---|---|
1 | Andreas Pauly | Algorithm Engineering: Concepts and Practice [1] | Mittwoch 10.04.13 14:00–17:00 |
2 | Sebastian Witte | A Parametric Approach to Solving Bicriterion Shortest Path Problems [5] | |
3 | David Mezlaf | On Spanning Tree Problems with Multiple Objectives [3] | |
4 | Maryna Malyuga | Theoretician's Guide to the Experimental Analysis of Algorithms [4] | |
5 | Johannes Kowald | Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems [11] | Donnerstag 11.04.13 9:30–12:30 |
6 | Christopher Morris | The Problem of the Optimal Biobjective Spanning Tree [7] | |
7 | Michael Capelle | A Label Correcting Approach for Solving Bicriterion Shortest-Path Problems [9] | |
8 | Hendrik Fichtenberger | Solving the Biobjective Minimum Spanning Tree Problem Using a k-Best Algorithm [10] | |
9 | Jakob Bossek | A Discussion of Scalarization Techniques for Multiple Objective Integer Programming [2] | Donnerstag 11.04.13 14:00–17:00 |
10 | Max Günther | A Comparison of Solution Strategies for Biobjective Shortest Path Problems [6] | |
11 | Sven Selmke | Genetic Algorithm Approach on Multi-criteria Minimum Spanning Tree Problem [12] | |
12 | Marco Kuhnke | Agile Project Management with SCRUM [8] | tba |
Literatur
- Algorithm Engineering: Concepts and Practice
M. Chimani, K. Klein
Experimental Methods for the Analysis of Optimization Algorithms, Springer Berlin Heidelberg, 131–158, 2010 - A discussion of scalarization techniques for multiple objective integer programming
M. Ehrgott
Annals of Operations Research, 147(1):343–360, 2006 - On spanning tree problems with multiple objectives
H.W. Hamacher, G. Ruhe
Annals of Operations Research, 52:209–230, 1994 - Theoretician's Guide to the Experimental Analysis of Algorithms
D. S. Johnson
Data Structures, Near Neigbor Searches, and Methodology: Proceedings of the Fifth and Sixth DIMACS Implementation Challenges, 215–250, 2002 - A parametric approach to solving bicriterion shortest path problems
J. Mote, I. Murthy, D.L. Olson
European Journal of Operational Research, 53:81–92, 1991 - A Comparison of Solution Strategies for Biobjective Shortest Path Problems
A. Raith, M. Ehrgott
Technical Report, University of Auckland, New Zealand, 2007 - The problem of the optimal biobjective spanning tree
R.M. Ramos, S. Alonso, J. Sicillia, C. Gonzales
European Journal of Operational Research, 111:617–628, 1998 - Agile Project Management with SCRUM
K. Schwaber
Microsoft Press, 2004 - A label correcting approach for solving bicriterion shortest-path problems
A.J.V. Skriver, K.A. Andersen
Computers & Operations Research, 27:507–524, 2000 - Solving the biobjective minimum spanning tree problem using a k-best algorithm
S. Steiner, T. Radzik
Technical Report TR-03-06, King's College London, 2003 - Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems
A. Warburton
Operations Research, 35(1):70–79, 1987 - Genetic algorithm approach on multi-criteria minimum spanning tree problem
G. Zhou, M. Gen
European Journal of Operational Research, 114:141–152, 1999