## Tutorial

## Ranking Mechanisms in Games

Vanessa Volz and Boris Naujoks

CIG 2018, Maastricht

technische universität
dortmund
Technology Arts Sciences
TH Köln
UTOPIÆ
micostany ,isiche


## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds
- In-game Decisions

| Bundesliga standings |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATCHES NEWS | STANDINGS | STATS |  |  |  | PLAYERS |  |  |
| Club | MP | w | D | L | GF | GA | GD | Pts |
| 1 (888 ${ }^{\text {8 }}$ Dortmund | 34 | 23 | 6 | 5 | 67 | 22 | 45 | 75 |
| 2 Bayer | 34 | 20 | 8 | 6 | 64 | 44 | 20 | 68 |
| 3 Bayern | 34 | 19 | 8 | 7 | 81 | 40 | 41 | 65 |
| 496 Hannover 96 | 34 | 19 | 3 | 12 | 49 | 45 | 4 | 60 |
| 5 (9) Mainz |  | 18 | 4 |  |  | 39 | 13 | 58 |

Football (German Bundesliga 2011)

## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds

StarCraft II (Grandmaster League 18 Season 2)

- In-game Decisions


## GRANDMASTER LEAGUE 2018 SEASON 2

The Grandikaster League is whare the tro hundred highest-ranked players in tach region
compete for the top spot. This list is updated in real-ime, so you will alvays find the most up-todate information about who is leading the pack here.
Amencas Europe Korea Taman Southeast Asia China

|  |  | Rank | Player | Points | Wins | Losses |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\wedge$ | 1st | X IEwaitziliquiahermy | 3352 | 177 | 50 |
|  | A | 2nd |  | 2984 | 145 | 61 |
|  | ^ | 3 c 1 | *8 (GoeS) Namshar | 3851 | 302 | 151 |
|  | - | 4ih | \% [mour] HeRoMaRine | 1975 | 50 | 15 |
|  | $!$ | 5h | \% EXFEDIRaynor | 169 | 3 | 0 | 2

## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds
- In-game Decisions

| FIFA World Cup ${ }^{\text {™ }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATCHES | NEWS | BRACKETS | PLAYERS | STATS |  | TANDINGS |
| FIFA World Cup ${ }^{\text {™ }}$ • 15/07 Full-time |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| France Croatia |  |  |  |  |  |  |
| Final |  |  |  |  |  |  |
| Mario Mandżukic 18' (OG) |  |  |  |  | $\square$ | erisicic $28^{\prime}$ |
| Antoine Griezmann $38{ }^{\prime}(\mathrm{P}) \quad$ Mario Mandżukićc $69^{\prime}$ |  |  |  |  |  |  |
| Paul Pogba 59' |  |  |  |  |  |  |
| Kylian Mbappe $65^{\prime}$ |  |  |  |  |  |  |

## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds

- In-game Decisions

AlphaGo vs. Lee Sedol (2016)

## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds


Hearthstone Queue

- In-game Decisions


## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds


Overwatch Queue

- In-game Decisions


## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds
- In-game Decisions


Chess

## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds
- In-game Decisions



## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds
- In-game Decisions


National Collegiate Counter-Strike League

## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds

Smite Divisions

- In-game Decisions


## Applications of Ranking Mechanisms

- Hierarchy
- Winner in a live event
- Matchmaking
- Handycapping
- Performance Thresholds


GVGAI

- In-game Decisions


## Ranking Mechanisms in CIG 18 Competitions

- Round Robin Tournament
- Hearthstone AI
- Fighting Game AI (Standard)
- microRTS
- StarCraft AI
- Average Score
- Hanabi
- Ms. Pac-Man vs. Ghost Team
- Text-based adventure AI
- Visual Doom AI (Deathmatch)
- GVGAI
- Time to beat opponent
- Fighting Game AI (Speedrun)
- Visual Doom AI (Speedrun)
- Others
- Short Video (Vote)
- Hearthstone AI alt (Glicko2)
- AI Birds: AI (Elim. tournament)
- AI Birds: Level (Vote)


## Why we're here!

- Various examples of ranking mechanisms in games
- But are they fair?



## Social Choice Theory

- formalisation of characteristics
- recommendations for ranking mechanisms


## Relations

- Relation $R$ on a set $X$ Subset of cartesian product $X \times X$ :

$$
R \subset X \times X
$$

- Properties of relations
- reflexive, if $\forall x \in X: x R x$.
- symmetric, if $\forall x, y \in X: \quad x R y \Rightarrow y R x$.
- anti-symmetric, if $\forall x, y \in X: x R y \wedge y R x \Rightarrow x=y$.
- transitive, if $\forall x, y, z \in X: x R y \wedge y R z \Rightarrow x R z$.


## Examples for relations

Set of real number $\boldsymbol{R}$ and relation
"<" (less than)

- not reflexive ( $x<x$ doesn't hold)
- not symmetric (from $x<y$ does not follow $y<x$ )
- but anti-symmetric ( $x<y$ and $y<x$ cannot hold both, hence implication is true)
- and transitive, (from $x<y$ and $y<z$ follows $x<z$ )
" $\leqslant$ " (less or equal)
- is reflexive ( $x \leqslant x$ holds)
- not symmetric (in general $x \leqslant y$ does not imply $y \leqslant x$ )
- but anti-symmetric $(x \leqslant y$ and $y \leqslant x$ implies $x=y)$
- and transitive (from $x<y$ and $y<z$ follows $x<z$ )


## Examples for relations

## Set of real number $\boldsymbol{R}$ and relation

" $\neq$ " (unequal)

- not reflexive $(x \neq x$ does not hold)
- but symmetric $(x \neq y \Rightarrow y \neq x)$
- not anti-symmetric ( $x \neq y$ and $y \neq x$ do not imply $y=x$ )
- and not transitive $(x \neq y$ and $y \neq z$ do not imply $x \neq z ; x=z$ is still possible).
"=" (equal)
- is reflexive ( $x=x$ holds)
- symmetrisch ( $x=y \Rightarrow y=x$ )
- anti-symmetric ( $x=y$ and $y=x$ implies $x=y$ )
- and transitive ( $x=y$ and $y=z$ imply $x=z$ )


## Orders

- Relation $R$ on set $X$ is called order $: \Leftrightarrow R$ is
- reflexive
- anti-symmertric and
- transitive
- Relation $R$ on set $X$ is called linear or total order $: \Leftrightarrow R$ is
- an order
- additionally:

$$
\forall x, y \in X: \quad x R y \vee y R x
$$

- Example
- $(\boldsymbol{R},<)$ is not an order, not reflexive
$-(\boldsymbol{R}, \leqslant)$ is a total order


## The social choice model

## Social Choice Theory

- formalisation of characteristics
- recommendations for ranking mechanisms


## How they correlate ...

- Finite set of $n$ voters and finite set $X$ of $k$ choices or candidates
- In gaming competitions: $n$ games and $k$ players
- In racing competitions: $n$ tracks and $k$ drivers
- In algorithm comparision: $n$ runs of $k$ algorithms


## 1998 Minnesota governor election



## Common Social Choice Example

| Candidate | Votes |
| :--- | :---: |
| Jesse Ventura | $37.0 \%$ |
| Norm Coleman | $34.3 \%$ |
| Skip Humphrey | $28.1 \%$ |

Preference list
Coleman Humphrey
Humphrey Coleman Ventura
Ventura Coleman Humphrey
Ventura Humphrey Coleman

Perc. of voters

17\%

## Ventura won, but

- $63 \%$ of voters liked him least!
- Coleman wins pairwise comparisons
- 55\% prefer Coleman to Humphrey
- $63 \%$ prefer Coleman to Ventura


## Easy example

- Imagine a racing competition featuring 7 tracks
- 3 drivers compete against each other: driver1, driver2, driver3

| Preference list | Number of occurrences |  |
| :--- | :--- | :---: |
| driver1 | driver2 | driver3 |
| driver2 | driver1 | driver3 |

- Who is the best driver?



## And the winner is ...

| Preference list | Number of occurrences |
| :--- | :---: |
| driver1 | driver2 |
| driver3 | 3 |
| driver2 | driver1 |
| driver3 | 2 |
| driver3 | driver2 |
|  | driver1 |



- driver1!
- Wins on most tracks
- driver2!
- Outperforms driver1 on 4 of 7 tracks


## The social choice model

- $L(X)$ set of all preference lists
i.e. set of all possible strict linear orders of $X$ (no ties allowed)
- $O(X)$ set of all preference lists
i.e. set of all possible linear orders of $X$ (ties allowed)
- Profile or election is element of cartesian product $L(X)^{n}$ i.e. set of $n$ preference lists, one from each voter (game, track)
- Ranking mechanism in games (social choice function or voting method) is function

$$
F: L(X)^{n} \rightarrow O(X)
$$

For given profile $R \in L(X)^{n}$, image $F(R)$ is called the ranking (social choice or societal ranking)

## Examples of social choice functions, rankings

- Plurality (also called majority)
- Candidates are ranked by number of first-place rankings
- Winner(s) is/are candidate(s) with the most first-place rankings
- Method is used in many elections including many local and state elections in US and partly German Bundestag
- Antiplurality
- Candidate with least last-place rankings wins
- Candidates ranked from last to first by the number of last-place rankings they receive


## Club president election example

- Anne (A), Brigitte (B), Claus (C), and David (D) running for president of a club
- club has 27 members
- 24 possible preference lists, but for this example only 4 are used

| Preference list | Number of occurrences |
| :---: | :---: |
| $A B C D$ | 12 |
| $B C D A$ | 7 |
| C D A B | 5 |
| D C B A | 3 |
| Other preferences | 0 |

- Who is the elected for president?


## And the winner is ...

| Preference list |  |
| :--- | :---: |
| A B C D | Number of occurrences |
| B C D A | 12 |
| C D A B | 7 |
| D C B A | 5 |
| Other preferences | 3 |

- Anne!
- Plurality
- 12 (most) first-place votes
- Claus !
- Antiplurality
- No (least) last-place votes


## Examples of social choice function

- Instant runoff
- Candidate(s) with the least first-place rankings is/are removed
- New set of preference lists for a smaller set of candidates
- Repeated until all candidates are eliminated
- Social choice is formed by listing candidates in reverse order in which they were eliminated
- Used for elections in Australia and for presidential elections in Ireland.


## And the winner is

| Preference list | Number of occurrences |
| :---: | :---: |
| A B C D | 12 |
| B C D A | 7 |
| $C D A B$ | 5 |
| D C B A | 3 |
| Other preferences | 0 |



- continued ...
- Instant runoff
- David eliminated first

| Preference list | No. of occu. |
| :--- | :---: |
| A B C | 12 |
| B C A | 7 |
| C A B | 5 |
| C B A | 3 |
| Other preferences | 0 |

- Brigitte is eliminated second

| Preference list | No. of occu. |
| :--- | :---: |
| A C | 12 |
| C A | 7 |
| C A | 5 |
| C A | 3 |
| Other preferences | 0 |

- Anne is emilinated last
$\Rightarrow$ Claus !


## Examples of social choice functions

- Borda count
- With k candidates
* $k-1$ points are given for a first place ranking
* $k-2$ points for a second place ranking
* and so on ...
- Candidates ranked by total sum of points they receive
- Candidate(s) with the most points win(s)
- Method (or derivatives) used frequently for sports-related polls


## And the winner is ...

| Preference list | Number of occurrences |
| :---: | :---: |
| A B C D | 12 |
| B C D A | 7 |
| C D A B | 5 |
| D C B A | 3 |
| Other preferences | 0 |



- Borda count
- Anne: $(12 \times 3)+(5 \times 1)=41$
- Brigitte: $(12 \times 2)+(7 \times 3)+(3 \times 1)=48$
- Claus: $(12 \times 1)+(7 \times 1)+(5 \times 3)+(3 \times 2)=47$
- David: $(7 \times 1)+(5 \times 2)+(3 \times 3)=26$
$\Rightarrow$ Brigitte !


## Wait ...

- Anne won wrt. Plurality
- Claus won according to Antiplurality
- Claus won again wrt. Instant runoff
- Brigitte won wrt. Borda count


## What?!? How ... ?!?

- Three different winners using four methods?
- So winner is depending on voting method?
- Does this seem reasonable?


## Condorcet

- Marquis Nicolas de Condorcet (1743-1794)
- French liberal thinker in the era of the French Revolution
- philosopher, mathematician, and political scientist
- Pursued by the revolutionary authorities for criticizing them
- Died in prison
- Essay on the Application of Analysis to the Probability of Majority Decisions (1785):

Essay sur l'Application de l'Analyse á la Probabilité des Décisions Rendue á la Pluralité des Voix

## Condorcet's 2 prominent insights

- Condorcet's jury theorem
- Each member of jury has chance of making a correct judgment on whether a defendant is guilty
* equal and independent
* better than random
* worse than perfect
$\Rightarrow$ majority of jurors is more likely to be correct than each individual juror
$\Rightarrow$ Probability of correct majority judgment approaches 1 as jury size increases
$\Rightarrow$ Under certain conditions, majority rule is good at 'tracking the truth'


## Condorcet's 2 prominent insights

- Condorcet's paradox

Majority preferences can be 'irrational' (intransitive)

- even when individual preferences are 'rational' (transitive).
- Example

| Preference list |  |
| :--- | :---: |
| No. of occu. |  |
| A B C | $1 / 3$ |
| B C A | $1 / 3$ |
| C A B | $1 / 3$ |

$\Rightarrow$ there are majorities (of two thirds)
$\star$ for A against B
$\star$ for B against C
$\star$ for $C$ against $A$
$\Rightarrow$ Cycle violates transitivity

## Condorcet

- Condorcet winner

Candidate who beat all other candidates in head-to-head contests

- Examples
$\star$ No Condorcet winner in Condorcet's paradox
* Coleman in 1998 Minnesota governor election example
- Condorcet loser

Candidate who loses to all other candidates in head-to-head contests

## Condorcet winner criterion

## Whenever there is a Condorcet winner, that candidate is the unique winner of the election.

- Plurality does not satisfy Condorcet winner criterion

```
Ventura won, but
- \(63 \%\) of voters liked him least!
- Coleman wins pairwise comparisons
- \(55 \%\) prefer Coleman to Humphrey
- \(63 \%\) prefer Coleman to Ventura
```

- Coleman was the Condorcet winner
- Ventura won


## Condorcet winner criterion

Whenever there is a Condorcet winner, that candidate is the unique winner of the election.

- Borda count does not satisfy Condorcet winner criterion
- Exampel

| Preference list |  |
| :--- | :---: |
| No. of occu. |  |
| A B C | 3 |
| B C A | 2 |

- Condorcet winner is A
- Borda count
* A: $(2 \times 3)+(0 \times 1)=6$
* $\mathrm{B}:(1 \times 3)+(2 \times 2)=7$
$\star$ C: $(0 \times 3)+(2 \times 1)=2$
$\Rightarrow B$ is winner
- Btw: Instant runoff does not either


## Condorcet winner criterion

Whenever there is a Condorcet winner, that candidate is the unique winner of the election.

- Plurality does not satisfy Condorcet winner criterion
- Borda count does not satisfy Condorcet winner criterion
- Instant runoff does not ...
- Are there any?
- Yes, there are!
- However, all of them run into other problems

> What about other criteria?

## Condorcet winner criterion example

- Choose winner based on head-to-head contests
$\Rightarrow$ Make sure Condorcet winner criterion is satisfied
- Example: Sequential pairwise voting
- fix an (arbitrary) order of candidates
- rounds of head-to-head contests between candidates following fixed order
- winner of contest between the first two goes up against third candidate ...
- until one candidate survives
- Satisfies the Condorcet winner criterion
- Condorcet winner will beat everyone else on the list


## Condorcet winner criterion example

| Preference list | Number of occurrences |
| :---: | :---: |
| A B C D | 12 |
| B C D A | 7 |
| C D A B | 5 |
| D C B A | 3 |
| Other preferences | 0 |

- Fixed ordering A B C D
-17 voters prefer $A$ to $B$, only $10 B$ to $A$
$\Rightarrow A$ beats $B$ 17:10
- C beats A 15:12
- C beats D 15:12
$\Rightarrow C$ is the winner
- Fixed ordering $A C B D B$ is the winner
- Fixed ordering $B C A D \Rightarrow D$ is the winner
- Fixed ordering $B C D A \Rightarrow A$ is the winner


## Some formalism required

- Set $N=1,2, \ldots, n$ of individuals $(n \geqslant 2)$
- Set of social alternatives $X=x, y, z, \ldots$
- Each individual $i \in N$ has a preference ordering $R_{i}$ over alternatives:
$\Rightarrow$ complete and transitive relation on X
- For any $x, y \in X: \quad x R_{i} y$ means that individual $i$ prefers $x$ to $y$
- $x P_{i} y$ if $x R_{i} y$ and not $y R_{i} x$ ('individual i strictly prefers x to y ')
- Profile

$$
<R_{1}, R_{2}, \ldots, R_{n}>
$$

combination of preference orderings across individuals

## Some more formalism required

- Preference aggregation rule $F$
- function that assigns to each profile a social preference relation

$$
R=F\left(R_{1}, R_{2}, \ldots, R_{n}\right) \text { on } X
$$

$$
F:<R_{1}, R_{2}, \ldots, R_{n}>\rightarrow R=F\left(R_{1}, R_{2}, \ldots, R_{n}\right)
$$

- Example: pairwise majority voting (Condorcet)
- For any profile $<R_{1}, R_{2}, \ldots, R_{n}>$ and any $x, y \in X$ : $x R y$ if and only if at least as many individuals have $x R_{i} y$ as have $y R_{i} x$ or

$$
\left|i \in N: x R_{i} y\right| \geqslant\left|i \in N: y R_{i} x\right|
$$

## Alternative criteria

- Independence of irrelevant alternatives


## Description

- Candidate $A$ is ranked higher than candidate $B$
- Some voters change their preference lists, but no voter changes their preference between $A$ and $B$
$\Rightarrow A$ should remain ranked higher than $B$

Societal preference between two candidates should depend only on the voters' preferences between $A$ and $B$

Mathematical formulation:

- For any two profiles $<R_{1}, R_{2}, \ldots, R_{n}>$ and $<R_{1}^{*}, R_{2}^{*}, \ldots, R_{n}^{*}>$
- For any $x, y \in X$
- if for all $i \in N$ :
$R_{i}$ 's ranking between $x$ and $y$ coincides with $R_{i}^{*}$ 's ranking between $x$ and $y$ $x R y$ if and only if $x R_{y}^{*}$.


## Alternative criteria

- Independence of irrelevant alternatives

Example: 1995 Women’s Figure Skating World Championship

Ranking before last skater:

- Chen Lu (China)
(2) Nicole Bobek (US)
(3) Suraya Bonaly (France)
last skater:
Michelle Kwan (US), who became 4.

Ranking after last skater:

- Chen Lu (China)
(2) Suraya Bonaly (France)
© Nicole Bobek (US)
(9) Michelle Kwan (US)
- Note: Nicole Bobek (US) and Suraya Bonaly (France) (2nd and 3rd before last skater) changed places!


## Alternative criteria

- Monotonicity


## Description

- Some voters move candidate A up in their preference lists
- No voters move A down
$\Rightarrow$ A cannot move down in the final ranking

Mathematical formulation

- For any profile $<R_{1}, R_{2}, \ldots, R_{n}>$ in the domain of $F$
- Social preference relation $R$ is complete and transitive


## Restaurant type example

- 17 conference attandancees
- 4 suggestions for dinner restaurant type
- Selected method: Instant runoff

| Preference list | Number of occurrences |
| :--- | :---: |
| Thai Chinese Italian German | 6 |
| Chinese Thai Italian German | 5 |
| Italian German Chinese Thai | 4 |
| German Italian Thai Chinese | 2 |
| Other preferences | 0 |

- Which type of restaurant to choose for dinner?


## And the winner is ...

| Preference list | Number of occurrences |
| :--- | :---: |
| Thai Chinese Italian German | 6 |
| Chinese Thai Italian German | 5 |
| Italian German Chinese Thai | 4 |
| German Italian Thai Chinese | 2 |
| Other preferences | 0 |

 Other preferences

0

- Instant runoff:
- German eliminated first
- Chinese eliminated second
- Italian eliminated last
$\Rightarrow$ Thai is the winner!
- Right before leaving, two voters from last row changed their mind
- German Italian Thai Chinese
- replaced by
- German Thai Italian Chinese


## And the winner is ...

| Preference list | Number of occurrences |
| :--- | :---: |
| Thai Chinese Italian German | 6 |
| Chinese Thai Italian German | 5 |
| Italian German Chinese Thai | 4 |
| German Thai Italian Chinese | 2 |
| Other preferences | 0 |



- Instant runoff:
- German eliminated first
- Italian eliminated second
- Thai eliminated last


## What?!?

Thai moved up in some preferences and went from winning to losing!
$\Rightarrow$ Chinese is the winner!

## Arrow's list of conditions

- Universal domain
- Voters can choose any possible preference order
- The domain of $F$ is the set of all logically possible profiles of complete and transitive individual preference orderings.
- Ordering

This is monotonicity or ordering as discussed above

- Independence of irrelevant alternatives

As discussed above

## Arrow's list of conditions

- Weak Pareto principle
- If all voters prefer $x$ over $y$, this should hold for final ranking
- For any profile $<R_{1}, R_{2}, \ldots, R_{n}>$ in the domain of $F$
- If for all $i \in N: x P_{i} y$ then $x P y$
- Nondictatorship
- There should not be a dictator
- One voter whose preference list determines the societal ranking completely.
- There does not exist an individual $i \in N$ such that
$\star$ for all $<R_{1}, R_{2}, \ldots, R_{n}>$ in the domain of $F$
* for all $x, y \in X$
$-x P_{i} y$ implies $x P y$.


## Main Result

- Kenneth Joseph Arrow (1921-2017)
- American economist, mathematician, writer, and political theorist
- 1972 joint winner of the Nobel Memorial Prize in Economic Sciences (with John Hicks)
- Many of his former graduate students won the Nobel Memorial Prize themselves
- Most significnt contribution:



## Arrow's impossibility theorem (1951)

If there are more than two candidates, then any social choice method cannot satisfy all of Arrow's five conditions.

## Consequences and Implications

- All social choice methods have flaws
- Even most that are used for politcal elections throughout the world
- Also holds for most ranking methods
- in sports
- in games
- etc


## Consequences and Implications

- Weakening or relaxing conditions

Works with different conditions and corresponding methods

- Example: independence of irrelevant alternatives
- Intensity of voters' preference between two candidates
- Number of other candidates listed between the two candidates
- Intensity of binary independence criterion:
$\star$ If some voters change their preference lists
* No voter changes their preference between candidates A and B or the intensity of their preference
$\Rightarrow$ Ranking of $A$ and $B$ in the social choice should not change

Borda count satisfies the conditions of Arrow's theorem with

- independence of irrelevant alternatives replaced by
- intensity of binary independence


## Challenges for Ranking in Games

- Arrow's impossibility theorem
- Statistical Comparisons
- Choice of Fitness Functions
- Choice of Test Cases



## Practical Recommendations

## HOW TO ROLL YOUR SLEEVES

How to decide on a ranking method

- Rarity of criteria
- Perceived fairness
- Simplicity for transparency


Overview of existing methods https://en.wikipedia.org/wiki/Comparison_of_electoral_systems

Alternative: Mechanism Design

## Lessons from EC Benchmarking

- Relevancy
- Fixed targets vs. fixed runtime
- Characteristics of problems (ELA)
- Evaluation Robustness (instances)
- Expected runtime measure
- Easy comparisons

- Info on optima?


## Open Problems

- Selection of Ranking Mechanism (Which criteria can be relaxed?)
- Characterisation of problems (How do we guarantee completeness?)
- Long-term Ranking (How does ELO fit in?)
- Appropriate and practical noise handling
- Game Evaluation Measures


## Games Benchmark



## References

SCT2013 Ch. List, Social Choice Theory in Stanford Encyclopedia of Philosophy, 2013, https:
//plato.stanford.edu/entries/social-choice/ (last accessed 13.08.2018)

Pow2015 V. Powers, How to choose a winner: the mathematics of social choice in Snapshots of modern mathematics No9/2015 from Oberwolfach No 9, 2015, https://publications.mfo.de/handle/mfo/452 (last accessed 13.08.2018)

Gro2005 Ralf Grötker, Kaputte Wahlen, 2005
http://www.heise.de/-3402700 (last accessed 13.08.2018)

