

A Short Introduction to COCO

Tea Tušar

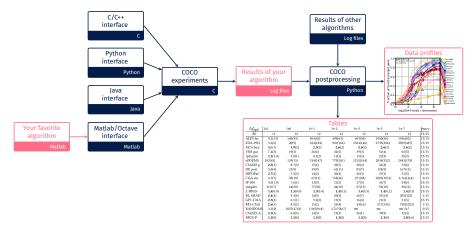
Computational Intelligence Group Department of Intelligent Systems Jožef Stefan Institute Ljubljana, Slovenia

July 15, 2018

Workshop on Game-Benchmark for Evolutionary Algorithms Genetic and Evolutionary Computation Conference, GECCO 2018 Kyoto, Japan

No free lunch theorem \Rightarrow No algorithm works best for all optimization problems

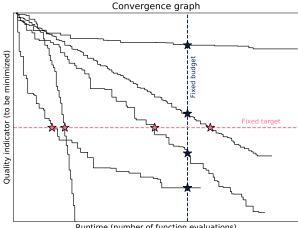
Purpose of benchmarking: To be able to select the best algorithm for the given real-world optimization problem


Preconditions

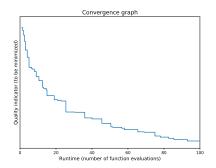
- The real-world problem with some known properties
- Test problems with similar properties to those of the real-world problem
- Results of several optimization algorithms on these test problems for any number of evaluations

The COCO platform

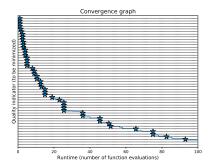
- COCO (Comparing Continuous Optimizers)
- https://github.com/numbbo/coco
- Automatized benchmarking of optimization algorithms
 - Test problems with known properties
 - $\cdot\,$ Data of previously run algorithms available for comparison
 - Provides interfaces to C/C++, Python, Java, Matlab/Octave
- Being developed at Inria Saclay, France, since 2007


Benchmarking with COCO

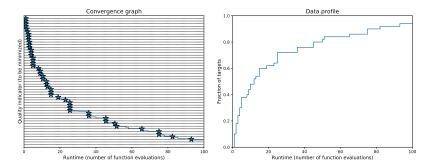
Requirements: C compiler and Python (other languages are optional)

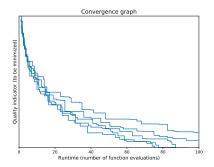

The fixed-target approach

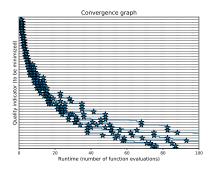
Interested in the runtime (number of function evaluations) needed to achieve a target value

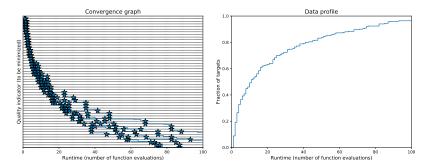


Runtime (number of function evaluations)


The data profile is the empirical cumulative distribution function (ECDF) of the recorded runtimes


The data profile is the empirical cumulative distribution function (ECDF) of the recorded runtimes


The data profile is the empirical cumulative distribution function (ECDF) of the recorded runtimes


Data profiles can aggregate performance over multiple runs

Data profiles can aggregate performance over multiple runs

Data profiles can aggregate performance over multiple runs

Test suites and algorithm results

- **bbob** test suite with 24 functions (173 algorithms)
- **bbob-noisy** test suite with 30 functions (45 algorithms)
- **bbob-biobj** test suite with 55 functions (16 algorithms)

Algorithm results collected at 9 BBOB Workshops (since 2009, mostly at GECCO conferences)

Under development

- Suite with constrained problems
- Suite with large-scale problems
- Suites with real-world problems