:mod:`continuous` --- Real-valued Test Problems =============================================== .. automodule:: optproblems.continuous Dixon-Szegö Collection ---------------------- The collection by Dixon and Szegö contains seven multimodal problems. All are non-separable, but otherwise quite easy. ============================================== ================ ================ ============= ============ Class name Problem name Number variables Global optima Local optima ============================================== ================ ================ ============= ============ :class:`optproblems.continuous.Shekel` Shekel5 4 1 5 :class:`optproblems.continuous.Shekel` Shekel7 4 1 7 :class:`optproblems.continuous.Shekel` Shekel10 4 1 10 :class:`optproblems.continuous.Hartman3` Hartman3 3 1 3 :class:`optproblems.continuous.Hartman6` Hartman6 6 1 2 :class:`optproblems.continuous.Branin` Branin 2 3 3 :class:`optproblems.continuous.GoldsteinPrice` GoldsteinPrice 2 1 4 ============================================== ================ ================ ============= ============ .. autoclass:: optproblems.continuous.DixonSzegoe :special-members: __init__ :members: .. autoclass:: optproblems.continuous.Shekel :special-members: __init__ :members: .. autoclass:: optproblems.continuous.Hartman3 :members: .. autoclass:: optproblems.continuous.Hartman6 :members: .. autofunction:: optproblems.continuous.branin .. autoclass:: optproblems.continuous.Branin :members: .. autofunction:: optproblems.continuous.goldstein_price .. autoclass:: optproblems.continuous.GoldsteinPrice :members: Other Problems -------------- The following table gives an overview of the other test problems in this module. Where it is not necessary by the implementation, bound constraints are not given. However, constraints can of course be defined by the user. The last two columns give the numbers of optima positions. In the column with local optima, exp means that the number is exponential in n, but the exact value depends on the bounds. The positions of local optima can only be obtained for those problems in the table where an exact number of local optima is given (with the exception of FletcherPowell). For Schaffer6 and Schaffer7, the optima positions are not discrete. ==================================================== ================== =================== ============= ============ Class/Problem name Number variables Bound-constrained Global optima Local optima ==================================================== ================== =================== ============= ============ :class:`optproblems.continuous.Ackley` n no 1 exp :class:`optproblems.continuous.DoubleSum` n no 1 1 :class:`optproblems.continuous.Ellipsoid` n no 1 1 :class:`optproblems.continuous.FletcherPowell` n yes 1 2^n :class:`optproblems.continuous.Griewank` n no 1 exp :class:`optproblems.continuous.Himmelblau` 2 no 4 4 :class:`optproblems.continuous.LunacekTwoSpheres` n yes 1 2 :class:`optproblems.continuous.LunacekTwoRastrigins` n yes 1 exp :class:`optproblems.continuous.ModifiedRastrigin` 4, 8, 16 yes 1 48 :class:`optproblems.continuous.Rastrigin` n no 1 exp :class:`optproblems.continuous.Rosenbrock` n no 1 ? :class:`optproblems.continuous.Schaffer6` 2 yes 1 inf :class:`optproblems.continuous.Schaffer7` 2 yes 1 inf :class:`optproblems.continuous.Schwefel` n yes 1 7^n :class:`optproblems.continuous.SixHumpCamelback` 2 no 2 6 :class:`optproblems.continuous.Sphere` n no 1 1 :class:`optproblems.continuous.Vincent` n yes 6^n 6^n :class:`optproblems.continuous.Weierstrass` n no 1 exp ==================================================== ================== =================== ============= ============ .. autofunction:: optproblems.continuous.ackley .. autoclass:: optproblems.continuous.Ackley :members: .. autofunction:: optproblems.continuous.double_sum .. autoclass:: optproblems.continuous.DoubleSum :members: .. autofunction:: optproblems.continuous.EllipsoidFunction .. autoclass:: optproblems.continuous.Ellipsoid :members: .. autoclass:: optproblems.continuous.FletcherPowell :special-members: __init__ :members: .. autofunction:: optproblems.continuous.himmelblau .. autoclass:: optproblems.continuous.Himmelblau :members: .. autofunction:: optproblems.continuous.griewank .. autoclass:: optproblems.continuous.Griewank :members: .. autoclass:: optproblems.continuous.LunacekTwoSpheres :special-members: __init__ :members: .. autoclass:: optproblems.continuous.LunacekTwoRastrigins :special-members: __init__ :members: .. autoclass:: optproblems.continuous.ModifiedRastriginFunction :members: .. autoclass:: optproblems.continuous.ModifiedRastrigin :members: .. autoclass:: optproblems.continuous.RastriginFunction :members: .. autoclass:: optproblems.continuous.Rastrigin :members: .. autofunction:: optproblems.continuous.rosenbrock .. autoclass:: optproblems.continuous.Rosenbrock :members: .. autofunction:: optproblems.continuous.schaffer6 .. autoclass:: optproblems.continuous.Schaffer6 :members: .. autofunction:: optproblems.continuous.schaffer7 .. autoclass:: optproblems.continuous.Schaffer7 :members: .. autofunction:: optproblems.continuous.schwefel .. autoclass:: optproblems.continuous.Schwefel :members: .. autofunction:: optproblems.continuous.six_hump_camelback .. autoclass:: optproblems.continuous.SixHumpCamelback :members: .. autofunction:: optproblems.continuous.sphere .. autoclass:: optproblems.continuous.Sphere :members: .. autofunction:: optproblems.continuous.vincent .. autoclass:: optproblems.continuous.Vincent :members: .. autoclass:: optproblems.continuous.WeierstrassFunction :members: .. autoclass:: optproblems.continuous.Weierstrass :members: Examples -------- Modifying existing bounds: .. code:: python from optproblems.continuous import Branin branin = Branin() # raises BoundConstraintError branin([16.0, 16.0]) # alter bounds branin.max_bounds = [20.0, 20.0] # now admissible branin([16.0, 16.0]) However, if no bound constraints were previously defined, you also have to add a :class:`BoundConstraintsChecker` preprocessor for bounds to be checked. .. code:: python from optproblems import * from optproblems.continuous import Sphere sphere = Sphere(2) sphere.min_bounds = [-5.0, -5.0] sphere.max_bounds = [5.0, 5.0] # still not checked sphere([10.0, 10.0]) bounds = ([-5.0, -5.0], [5.0, 5.0]) preprocessor = BoundConstraintsChecker(bounds) sphere = Sphere(2, phenome_preprocessor=preprocessor) # now the exception is raised sphere([10.0, 10.0]) # however, bounds are not automatically saved as problem attributes sphere.min_bounds # raises AttributeError .. note:: If you modify constraints, the information obtained from :func:`get_optimal_solutions` and :func:`get_locally_optimal_solutions` may be incorrect, i.e., returned solutions may be actually infeasible.