5. Differenzierbare Funktionen

Kapitelgliederung

dortmund

- 5.1 Differenzierbarkeit einer Funktion
- 5.2 Differentiations-Regeln

technische universität

- 5.3 Ableitungen höherer Ordnung
- 5.4 Numerisches Differenzieren
- 5.5 Lokale Extrema und Mittelwertsätze
- 5.6 Kurvendiskussion

Buchholz / Rudolph: Mafl 2

. . .

technische universität

Buchholz / Rudolph: Mafl 2

dortmund

LS Informatik 4 & 11

tu

technische universität dortmund

LS Informatik 4 & 11

5.1 Differenzierbarkeit einer Funktion

Definition 5.1 (Differenzierbarkeit)

Sei $a \in A \subseteq \mathbb{R}$ und sei $f : A \to \mathbb{R}$ eine Funktion. f heißt **in** a **differenzierbar**, falls der Grenzwert

$$f'(a) = \lim_{\substack{x \to a \\ x \in A \setminus \{a\}}} \frac{f(x) - f(a)}{x - a}$$

existiert.

Buchholz / Rudolph: Mafl 2

Satz 5.2

Eine Funktion $f:A\to\mathbb{R}$ $(A\subset\mathbb{R})$ ist in einem Häufungspunkt $a\in A$ genau dann differenzierbar, wenn es eine Konstante $c \in \mathbb{R}$ gibt, sodass

$$f(x) = f(a) + c \cdot (x - a) + r(x)$$

für $x \in A$ und r(x) eine Funktion mit der Eigenschaft

$$\lim_{x\to a,\ x\neq a}\frac{r(x)}{x-a}=0$$

ist. Es gilt in diesem Fall c = f'(a).

Buchholz / Rudolph: Mafl 2

Satz 5.2

Eine Funktion $f:A\to\mathbb{R}\;(A\subseteq\mathbb{R})$ ist in einem Häufungspunkt $a\in A$ genau dann differenzierbar, wenn es eine Konstante $c \in \mathbb{R}$ gibt, sodass

$$f(x) = f(a) + c \cdot (x - a) + r(x)$$

für $x \in A$ und r(x) eine Funktion mit der Eigenschaft

$$\lim_{x \to a, \ x \neq a} \frac{r(x)}{x - a} = 0$$

ist. Es gilt in diesem Fall c = f'(a).

Beweisidee

"", \Rightarrow " Falls f diff'bar, dann $\lim_{x \to a} \frac{r(x)}{x-a} = 0$ zeigen.

"

"Def. der Diff'barkeit ergibt sich genau aus den Grenzwerten.

Buchholz / Rudolph: Mafl 2

LS Informatik 4 & 11

Satz 5.3 (Stetigkeit - Differenzierbarkeit)

Ist die Funktion $f: A \to \mathbb{R}$ $(A \subseteq \mathbb{R})$ in $a \in A$ differenzierbar, so ist sie in $a \in A$ auch stetig.

LS Informatik 4 & 11

Satz 5.3 (Stetigkeit - Differenzierbarkeit)

Ist die Funktion $f:A\to\mathbb{R}\ (A\subseteq\mathbb{R})$ in $a\in A$ differenzierbar, so ist sie in $a \in A$ auch stetig.

Beweisidee

Nutzung der Darstellung aus Satz 5.2.

5.2 Differentiations-Regeln

Buchholz / Rudolph: Mafl 2

145

Buchholz / Rudolph: Mafl 2

technische universität

folgende Rechenregeln:

differenzierbar und es gilt:

Satz 5.4 (Algebraische Operationen)

LS Informatik 4 & 11

Satz 5.4 (Algebraische Operationen)

Seien $f,g:A\to\mathbb{R}$ in $a\in A$ differenzierbar und $c\in\mathbb{R}$. Dann sind auch die Funktionen $f+g,c\cdot f,f\cdot g:A\to\mathbb{R}$ in a differenzierbar und es gelten folgende Rechenregeln:

i) Linearität:
$$(f + g)'(a) = f'(a) + g'(a)$$

 $(c \cdot f)'(a) = c \cdot f'(a)$

ii) Produktregel:
$$(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$$

Ist ferner $g(x) \neq 0$ für alle $x \in A$, so ist auch die Funktion $\frac{f}{g} : A \to \mathbb{R}$ differenzierbar und es gilt:

iii) Quotientenregel:
$$(\frac{f}{g})'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$$

Beweisidee

Betrachtung der kombinierten Grenzwerte.

LS Informatik 4 & 11

Satz 5.5 (Ableitung der Umkehrfunktion)

Sei $I \subset \mathbb{R}$ ein Intervall, das aus mehr als einem Punkt besteht und sei $f:I \to \mathbb{R}$ eine stetige, streng monotone Funktion und $g=f^{-1}:J \to \mathbb{R}$ mit J=f(I) deren Umkehrfunktion.

Seien $f,g:A\to\mathbb{R}$ in $a\in A$ differenzierbar und $c\in\mathbb{R}$. Dann sind auch die Funktionen $f+g,c\cdot f,f\cdot g:A\to\mathbb{R}$ in a differenzierbar und es gelten

ii) Produktregel: $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$

Ist ferner $g(x) \neq 0$ für alle $x \in A$, so ist auch die Funktion $\frac{f}{g} : A \to \mathbb{R}$

iii) Quotientenregel: $(\frac{f}{\sigma})'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{\sigma^2(a)}$

i) Linearität: (f+g)'(a) = f'(a) + g'(a)

 $(c \cdot f)'(a) = c \cdot f'(a)$

Ist f in $a \in I$ differenzierbar und gilt $f'(a) \neq 0$, so ist g in b = f(a) differenzierbar und es gilt:

$$g'(b) = \frac{1}{f'(a)} = \frac{1}{f'(g(b))}$$
.

Satz 5.5 (Ableitung der Umkehrfunktion)

Sei $I \subset \mathbb{R}$ ein Intervall, das aus mehr als einem Punkt besteht und sei $f: I \to \mathbb{R}$ eine stetige, streng monotone Funktion und $g = f^{-1}: J \to \mathbb{R}$ mit J = f(I) deren Umkehrfunktion.

Ist f in $a \in I$ differenzierbar und gilt $f'(a) \neq 0$, so ist g in b = f(a) differenzierbar und es gilt:

$$g'(b) = \frac{1}{f'(a)} = \frac{1}{f'(g(b))}$$
.

Beweisidee

Nutzung der Stetigkeit von g und Einsetzen der Grenzwerte in die Definition der Ableitung.

Buchholz / Rudolph: Mafl 2

147

Satz 5.6 (Kettenregel)

Seien $f:A\to\mathbb{R}$ und $g:B\to\mathbb{R}$ $(A,B\subseteq\mathbb{R})$ Funktionen. Sei f in $a\in A$ differenzierbar und g sei in b=f(a) differenzierbar. Dann ist die zusammengesetzte Funktion $g\circ f:A\to\mathbb{R}$ in Punkt $a\in A$ differenzierbar und es gilt

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a) .$$

Buchholz / Rudolph: Mafl 2

1.40

LS Informatik 4 & 11

Satz 5.6 (Kettenregel)

Seien $f:A\to\mathbb{R}$ und $g:B\to\mathbb{R}$ $(A,B\subseteq\mathbb{R})$ Funktionen. Sei f in $a\in A$ differenzierbar und g sei in b=f(a) differenzierbar. Dann ist die zusammengesetzte Funktion $g\circ f:A\to\mathbb{R}$ in Punkt $a\in A$ differenzierbar und es gilt

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a) .$$

Beweisidee

Definition einer Hilfsfunktion

$$g^*(y) := egin{cases} rac{g(y) - g(b)}{y - b} &, ext{ falls } y
eq b \ g'(b) &, ext{ falls } y = b \ . \end{cases}$$

und Einsetzen von $g^*(x)$ in den Grenzwert.

LS Informatik 4 & 11

5.3 Ableitungen höherer Ordnung

Definition 5.7 (Ableitung höherer Ordnung)

Sei $f: A \to \mathbb{R}$ mit $A \subseteq \mathbb{R}$. Dann ist die k-te **Ableitung** (oder **Ableitung** k-ter Ordnung) von f in $a \in A$ definiert als $f^{(k)}(a)$ (f oben $k, k \in \mathbb{N}_0$) mit

- 1. $f^{(0)}(a) = f(a)$
- 2. $f^{(k+1)}(a) = (f^{(k)}(a))' : A \to \mathbb{R}$, falls die Ableitung von $f^{(k)}(a)$ in $a \in A$ existiert.

Buchholz / Rudolph: Mafl 2

Satz 5.8 (Operationen auf Ableitungen)

Sei $k \in \mathbb{N}$, $c \in \mathbb{R}$, $\emptyset \neq A \subseteq \mathbb{R}$ und seien $f : A \to \mathbb{R}$ und $g : A \to \mathbb{R}$ k-mal differenzierbar.

- 1. Dann sind f + g, f g, $c \cdot f$, $f \cdot g$ und falls $g(x) \neq 0$ für alle $x \in A$ $\frac{f}{\sigma}$ k-mal differenzierbar und es gilt:
 - i) $(f+g)^{(k)}(a) = f^{(k)}(a) + g^{(k)}(a)$
 - ii) $(f-g)^{(k)}(a) = f^{(k)}(a) g^{(k)}(a)$
 - iii) $(cf)^{(k)}(a) = cf^{(k)}(a)$
 - $(iv) (fg)^{(k)}(a) = \sum_{i=0}^{k} {k \choose i} f^{(i)}(a) \cdot g^{(k-i)}(a)$ (Leibnizsche Formel)
 - $v) \left(\frac{f}{g}\right)^{(k)}(a) = \frac{f^{(k)}(a) \sum_{i=0}^{k-1} {k \choose i} \left(\frac{f}{g}\right)^{(i)}(a)g^{(k-i)}(a)}{g(a)}$

Buchholz / Rudolph: Mafl 2

LS Informatik 4 & 11

Satz 5.8 (Fortsetzung)

2. Ist ferner $f(A) \subseteq B \subseteq \mathbb{R}$ und $g: B \to \mathbb{R}$ k-mal differenzierbar, so ist auch $(g \circ f)$ k-mal differenzierbar.

LS Informatik 4 & 11

Satz 5.8 (Fortsetzung)

2. Ist ferner $f(A) \subset B \subset \mathbb{R}$ und $g: B \to \mathbb{R}$ k-mal differenzierbar, so ist auch $(g \circ f)$ k-mal differenzierbar.

Beweisidee

Rekursive Anwendung der Differentiationsregel.

Buchholz / Rudolph: Mafl 2

technische universität dortmund

LS Informatik 4 & 11

$$\exp'(1) pprox rac{\exp(1+h)-\exp(1)}{h}$$
,

h	Berechneter Wert	Fehler
1.0e + 0	4.6707742704716058	1.9524924420125607e + 0
1.0 <i>e</i> − 2	2.7319186557871245	1.3636827328079359 <i>e</i> — 2
1.0 <i>e</i> – 4	2.7184177470829241	1.3591862387896114 <i>e</i> — 4
1.0 <i>e</i> — 6	2.7182831874306141	1.3589715690542903 <i>e</i> — 6
1.0 <i>e</i> — 8	2.7182818218562939	-6.6027512346522599 <i>e</i> - 9
1.0e - 10	2.7182833761685279	1.5477094827964777 <i>e</i> — 6
1.0 <i>e</i> — 12	2.7187141427020829	4.3231424303780130 <i>e</i> — 4
1.0e - 14	2.7089441800853815	−9.3376483736635763 <i>e</i> − 3
1.0 <i>e</i> - 16	0.000000000000000000	-2.7182818284590451e + 0

LS Informatik 4 & 11

Approximation der Ableitung durch

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

oder

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

für festes h > 0

Auftretende Fehler:

- 1. Approximationsfehler
- 2. Rundungsfehler

Buchholz / Rudolph: Mafl 2

technische universität dortmund

LS Informatik 4 & 11

$$\exp'(1) pprox rac{\exp(1+h) - \exp(1-h)}{2h} \; ,$$

h	Berechneter Wert	Fehler
5.0 <i>e</i> – 1	2.8329677996379363	1.1468597117889123 <i>e</i> — 1
5.0 <i>e</i> — 3	2.7182931546474443	1.1326188399163328 <i>e</i> — 5
5.0 <i>e</i> — 5	2.7182818295923283	1.1332832450250407 <i>e</i> — 9
5.0 <i>e</i> – 7	2.7182818285176320	5.8586913098679361 <i>e</i> — 11
5.0 <i>e</i> — 9	2.7182818218562939	-6.6027512346522599 <i>e</i> - 9
5.0 <i>e</i> - 11	2.7182833761685279	1.5477094827964777 <i>e</i> — 6
5.0 <i>e</i> — 13	2.7182700534922328	-1.1774966812261312e-5
5.0 <i>e</i> — 15	2.7533531010703878	3.5071272611342685 <i>e</i> — 2
5.0 <i>e</i> — 17	0.000000000000000000	-2.7182818284590451e + 0

Buchholz / Rudolph: Mafl 2

5.5 Lokale Extrema und Mittelwertsätze

Gilt sogar f(x) > f(y) (bzw. f(x) < f(y)) für alle $y \neq x$ mit $|x - y| < \varepsilon$ so spricht man von einem strikten lokalen Maximum (bzw. striktem lokalen Minimum).

Sei $f:(a,b)\to\mathbb{R}$ eine Funktion, dann hat f in $x\in(a,b)$ ein **lokales Maximum** (bzw. **lokales Minimum**), wenn ein $\varepsilon>0$ existiert, sodass

 $f(x) \ge f(y)$ (bzw. $f(x) \le f(y)$) für alle y mit $|x - y| < \varepsilon$ gilt.

Buchholz / Rudolph: Mafl 2

157

Buchholz / Rudolph: Mafl 2

LS Informatik 4 & 11

Satz 5.10 (Notwendige Bedingung für lokale Extrema)

Die Funktion $f:(a,b)\to\mathbb{R}$ besitze im Punkt $x\in(a,b)$ ein lokales Extremum und sei in x differenzierbar. Dann ist f'(x)=0.

technische universität dortmund

technische universität

Definition 5.9 (Lokale Extrema)

dortmund

LS Informatik 4 & 11

Satz 5.10 (Notwendige Bedingung für lokale Extrema)

Die Funktion $f:(a,b)\to\mathbb{R}$ besitze im Punkt $x\in(a,b)$ ein lokales Extremum und sei in x differenzierbar. Dann ist f'(x)=0.

Beweisidee

Zeigen, dass der Grenzwert in eine Richtung kleiner und in die andere Richtung größer 0 ist.

Buchholz / Rudolph: Mafl 2

Satz 5.11 (Satz von Rolle)

Sei a < b und $f : [a, b] \to \mathbb{R}$ eine stetige Funktion mit f(a) = f(b). Wenn die Funktion f in (a, b) differenzierbar ist, dann existiert ein $c \in (a, b)$ mit f'(c) = 0.

Buchholz / Rudolph: Mafl 2

Satz 5.11 (Satz von Rolle)

Sei a < b und $f : [a, b] \to \mathbb{R}$ eine stetige Funktion mit f(a) = f(b). Wenn die Funktion f in (a, b) differenzierbar ist, dann existiert ein $c \in (a, b)$ mit f'(c) = 0.

Beweisidee

Es muss ein lokales Extremum im Intervall existieren, dort ist die Ableitung gleich 0 (nach Satz 5.10).

Buchholz / Rudolph: Mafl 2

LS Informatik 4 & 11

technische universität

LS Informatik 4 & 11

Satz 5.12 (Mittelwertsatz)

Sei a < b und $f : [a, b] \rightarrow \mathbb{R}$ eine stetige Funktion, die in (a, b)differenzierbar ist. Dann existiert ein $c \in (a, b)$, sodass

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

Satz 5.12 (Mittelwertsatz)

Sei a < b und $f : [a, b] \rightarrow \mathbb{R}$ eine stetige Funktion, die in (a, b)differenzierbar ist. Dann existiert ein $c \in (a, b)$, sodass

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

Beweisidee

Definition einer Hilfsfunktion, so dass der Satz aus Satz 5.11 folgt.

Buchholz / Rudolph: Mafl 2

Buchholz / Rudolph: Mafl 2

Korollar 5.13

Sei $f:[a,b]\to\mathbb{R}$ eine stetige und in (a,b) differenzierbare Funktion mit $K^-\leq f'(x)\leq K^+$ für alle $x\in(a,b)$ und $K^-,K^+\in\mathbb{R}$.

Für alle $c, d \in [a, b]$ mit $c \le d$ gilt dann

$$K^{-}(d-c) \leq f(d) - f(c) \leq K^{+}(d-c)$$
.

Buchholz / Rudolph: Mafl 2

162

Satz 5.14 (Monotonie von Funktionen)

Sei $f:[a,b] \to \mathbb{R}$ stetig und in (a,b) differenzierbar.

- i) f ist in [a, b] monoton wachsend $\Leftrightarrow \forall x \in (a, b) : f'(x) \ge 0$.
- ii) f ist in [a, b] monoton fallend $\Leftrightarrow \forall x \in (a, b) : f'(x) \leq 0$.
- iii) $\forall x \in (a, b) : f'(x) > 0 \Rightarrow f$ streng monoton wachsend.
- iv) $\forall x \in (a,b): f'(x) < 0 \Rightarrow f$ streng monoton fallend.

Buchholz / Rudolph: Mafl 2

LS Informatik 4 & 11

Satz 5.14 (Monotonie von Funktionen)

Sei $f:[a,b] \to \mathbb{R}$ stetig und in (a,b) differenzierbar.

- i) f ist in [a, b] monoton wachsend $\Leftrightarrow \forall x \in (a, b) : f'(x) \geq 0$.
- ii) f ist in [a, b] monoton fallend $\Leftrightarrow \forall x \in (a, b) : f'(x) \leq 0$.
- iii) $\forall x \in (a,b): f'(x) > 0 \Rightarrow f$ streng monoton wachsend.
- iv) $\forall x \in (a,b): f'(x) < 0 \Rightarrow f$ streng monoton fallend.

Beweisidee

Nutzung des Mittelwertsatzes 5.12 der den Zusammenhang zwischen den Funktionswerten und der Ableitung herstellt.

technische universität

LS Informatik 4 & 11

Satz 5.15 (Strenges lokales Maximum/Minimum)

Sei $f:(a,b)\to\mathbb{R}$ eine differenzierbare Funktion, die im Punkt $x\in(a,b)$ zweimal differenzierbar ist.

Falls f'(x) = 0 und f''(x) > 0 (bzw. f''(x) < 0), dann besitzt f in x ein strenges lokales Minimum (bzw. Maximum).

Satz 5.15 (Strenges lokales Maximum/Minimum)

Sei $f:(a,b)\to\mathbb{R}$ eine differenzierbare Funktion, die im Punkt $x\in(a,b)$ zweimal differenzierbar ist.

Falls f'(x) = 0 und f''(x) > 0 (bzw. f''(x) < 0), dann besitzt f in x ein strenges lokales Minimum (bzw. Maximum).

Beweisidee

Für ein strenges lokales Minimum zeigen, dass f streng monoton fallend in $(x - \varepsilon, x)$ und streng monoton wachsend in $(x, x + \varepsilon)$ unter Nutzung von Satz 5.14.

Buchholz / Rudolph: Mafl 2

164

LS Informatik 4 & 11

Satz 5.16

Sei $f:(a,b)\to\mathbb{R}$ eine differenzierbare Funktion, die im Punkt $x\in(a,b)$ n+1mal differenzierbar ist. Falls $f'(x)=f^{(2)}(x)=\ldots=f^{(n)}(x)=0$ und $f^{(n+1)}(x)\neq 0$, dann besitzt f in x

- i) ein strenges lokales Minimum, falls n ungerade ist und $f^{(n+1)}(x) > 0$,
- ii) ein strenges lokales Maximum, falls n ungerade ist und $f^{(n+1)}(x) < 0$,
- iii) kein Extremum, falls n gerade ist.

Beweisidee

Über die Taylorreihenentwicklung der Funktion f, die wir in Kapitel 7 kennen lernen.

Satz 5.16

Sei $f:(a,b)\to\mathbb{R}$ eine differenzierbare Funktion, die im Punkt $x\in(a,b)$ n+1mal differenzierbar ist. Falls $f'(x)=f^{(2)}(x)=\ldots=f^{(n)}(x)=0$ und $f^{(n+1)}(x)\neq 0$, dann besitzt f in x

- i) ein strenges lokales Minimum, falls n ungerade ist und $f^{(n+1)}(x) > 0$,
- ii) ein strenges lokales Maximum, falls n ungerade ist und $f^{(n+1)}(x) < 0$,
- iii) kein Extremum, falls n gerade ist.

Buchholz / Rudolph: Mafl 2

165

technische universität

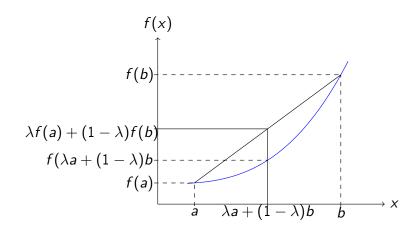
LS Informatik 4 & 11

Definition 5.17

Sei $(a,b) \subset \mathbb{R}$. Eine Funktion $f:(a,b) \to \mathbb{R}$ heißt **konvex**, wenn für alle $x_1, x_2 \in (a,b)$ und alle $\lambda \in (0,1)$ gilt

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

Die Funktion heißt **konkav**, falls –f konvex ist.



Buchholz / Rudolph: Mafl 2

167

Buchholz / Rudolph: Mafl 2

LS Informatik 4 & 11

Satz 5.18

Sei $f:(a,b)\to\mathbb{R}$ eine zweimal differenzierbare Funktion.

f ist genau dann konvex, wenn $f''(x) \ge 0$ für alle $x \in (a,b)$.

Beweisidee

Jeweils eine Richtung beweisen.

Wenn die zweite Ableitung nicht-negativ ist, ist die erste Ableitung monoton wachsend, woraus man mit Hilfe des Mittelwertsatzes die Konvexität ableiten kann.

Wenn f konvex ist, zeigt man per Widerspruchsbeweis, dass die zweite Ableitung nicht negativ werden kann.

Satz 5.18

LS Informatik 4 & 11

Satz 5.19 (Zweiter Mittelwertsatz)

Seien $f:[a,b] \to \mathbb{R}$ und $g:[a,b] \to \mathbb{R}$ zwei Funktionen, die auf [a,b] stetig und auf (a,b) differenzierbar sind. Sei ferner $g'(x) \neq 0$ für alle $x \in (a,b)$, dann ist $g(a) \neq g(b)$ und es existiert ein $c \in (a,b)$ mit

Sei $f:(a,b)\to\mathbb{R}$ eine zweimal differenzierbare Funktion. f ist genau dann konvex, wenn $f''(x)\geq 0$ für alle $x\in(a,b)$.

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$$

Satz 5.19 (Zweiter Mittelwertsatz)

Seien $f:[a,b]\to\mathbb{R}$ und $g:[a,b]\to\mathbb{R}$ zwei Funktionen, die auf [a,b]stetig und auf (a, b) differenzierbar sind. Sei ferner $g'(x) \neq 0$ für alle $x \in (a,b)$, dann ist $g(a) \neq g(b)$ und es existiert ein $c \in (a,b)$ mit

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$$

Beweisidee

Mit Hilfe von Satz 5.11 zeigt man, dass $g(a) \neq g(b)$ gilt. Im zweiten Schritt wird eine Hilfsfunktion definiert, auf die wieder Satz 5.11 angewendet werden kann, um den Rest zu zeigen.

Buchholz / Rudolph: Mafl 2

Buchholz / Rudolph: Mafl 2

LS Informatik 4 & 11

Satz 5.20 (Regel von L'Hospital $\frac{0}{0}$)

Seien $f:[a,b] \to \mathbb{R}$ und $g:[a,b] \to \mathbb{R}$ zwei auf [a,b] stetige und auf (a, b) differenzierbare Funktionen. Sei $c \in [a, b]$ und $g'(x) \neq 0$ für $x \in (a,b) \setminus \{c\}.$

Gilt $\lim_{x \to c} f(x) = 0$ und $\lim_{x \to c} g(x) = 0$ und existiert $\lim_{x \to c} \frac{f'(x)}{g'(x)} \in \mathbb{R}$, so existiert auch $\lim_{x\to c} \frac{f(x)}{g(x)}$ und es gilt $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$.

Beweisidee

Grenzwertbetrachtungen, die zeigen, dass

$$\frac{f(x_i)}{g(x_i)} = \frac{f'(x_{i+1})}{g'(x_{i+1})}$$

für $x_{i+1} \in (x_i, c)$

Satz 5.20 (Regel von L'Hospital $\frac{0}{0}$)

Seien $f:[a,b]\to\mathbb{R}$ und $g:[a,b]\to\mathbb{R}$ zwei auf [a,b] stetige und auf (a,b) differenzierbare Funktionen. Sei $c \in [a,b]$ und $g'(x) \neq 0$ für $x \in (a, b) \setminus \{c\}.$

Gilt $\lim_{x\to c} f(x) = 0$ und $\lim_{x\to c} g(x) = 0$ und existiert $\lim_{x\to c} \frac{f'(x)}{g'(x)} \in \mathbb{R}$, so existiert auch $\lim_{x\to c} \frac{f(x)}{g(x)}$ und es gilt $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$.

LS Informatik 4 & 11

Definition 5.21 (Uneigentlicher Grenzwert)

Sei $f:A o\mathbb{R}$ und a ein Häufungspunkt von A. Falls für alle $K\in\mathbb{R}$ ein $\delta > 0$ existiert, sodass f(x) > K für $|x - a| < \delta$, so schreibt man $\lim f(x) = \infty.$

Falls
$$\lim_{x\to a} -f(x) = \infty \Leftrightarrow \lim_{x\to a} f(x) = -\infty.$$

Satz 5.22 (Regel von L'Hospital $\frac{\infty}{\infty}$)

Seien $f:[a,b]\to\mathbb{R}$ und $g:[a,b]\to\mathbb{R}$ zwei auf [a,b] stetig und auf (a,b) differenzierbare Funktionen. Sei $c \in [a,b]$ und $g'(x) \neq 0$ für $x \in (a, b) \setminus \{c\}.$

Gilt $\lim_{x\to c} f(x) = \infty$ und $\lim_{x\to c} g(x) = \infty$ und existiert $\lim_{x\to c} \frac{f'(x)}{g'(x)}$, so existiert auch $\lim_{x\to c} \frac{f(x)}{g(x)}$ und es gilt $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$.

Buchholz / Rudolph: Mafl 2

Satz 5.22 (Regel von L'Hospital ∞)

Seien $f:[a,b]\to\mathbb{R}$ und $g:[a,b]\to\mathbb{R}$ zwei auf [a,b] stetig und auf (a,b) differenzierbare Funktionen. Sei $c \in [a,b]$ und $g'(x) \neq 0$ für $x \in (a, b) \setminus \{c\}.$

Gilt $\lim_{x \to c} f(x) = \infty$ und $\lim_{x \to c} g(x) = \infty$ und existiert $\lim_{x \to c} \frac{f'(x)}{g'(x)}$, so existiert auch $\lim_{x\to c} \frac{f(x)}{g(x)}$ und es gilt $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$.

Beweisidee

Anwendung von Satz 5.20 auf $F(x) = \frac{1}{f(x)}$ und $G(x) = \frac{1}{g(x)}$.

Buchholz / Rudolph: Mafl 2

LS Informatik 4 & 11

5.6 Kurvendiskussion

LS Informatik 4 & 11

Punkte der Kurvendiskussion einer Funktion $f: A \to \mathbb{R}$:

- 1. Symmetrie
- 2. Verhalten am Rand des Definitionsbereichs
- 3. Nullstellen
- 4. Extrempunkte
- 5. Wendepunkte
- 6. Funktionsgraph

1 Symmetrie

Achsensymmetrie: f(x) = f(-x)

Punktsymmetrie: f(-x) = -f(x)

In beiden Fällen muss $x \in A \Leftrightarrow -x \in A$ gelten!

2. Verhalten am Rand

▶ Interessant sind Häufungspunkte $a \notin A$ und

• bei unbeschränktem A das Verhalten für $x \to \infty$ bzw. $x \to -\infty$

Asymptote

Verhalten für $x \to \infty$ beschrieben durch Gerade $g(x) = \alpha x + \beta$, so dass $\lim_{x \to \infty} (f(x) - g(x)) = 0 \ (\alpha, \beta \in \mathbb{R})$

Es gilt:

$$\lim_{x \to \infty} \frac{f(x)}{x} = \alpha \text{ und } \lim_{x \to \infty} (f(x) - \alpha x) = \beta$$

(analog für $x \to -\infty$)

Buchholz / Rudolph: Mafl 2

17

LS Informatik 4 & 11

5. Wendepunkte

Punkt $a \in A$, so dass $\epsilon > 0$ existiert und $(a - \epsilon, a + \epsilon) \subseteq A$, sowie

$$f''(x) \begin{cases} < 0 & \text{für } x \in (a - \varepsilon, a) \\ = 0 & \text{für } x = a \\ > 0 & \text{für } x \in (a, a + \varepsilon) \end{cases}$$
 oder

$$f''(x) \begin{cases} > 0 & \text{für } x \in (a - \varepsilon, a) \\ = 0 & \text{für } x = a \\ < 0 & \text{für } x \in (a, a + \varepsilon) \end{cases}$$

Hinreichende Bedingung: f''(a) = 0 und $f^{(3)}(a) \neq 0$.

Buchholz / Rudolph: Mafl 2

technische universität dortmund

> 3. Bestimmung von Nullstellen Berechne f(x) = 0 (siehe nächstes Kapitel)

4. Berechnung von Extrempunkten

Notwendige Bedingung für lokalen Extrempunkt $a \in A$:

$$f'(a)=0$$
 falls Umgebung $(a-\epsilon,a+\epsilon)\subseteq A$ für $\epsilon>0$ existiert

Hinreichende Bedingung

f''(a) < 0 für lokales Maximum, f''(a) > 0 für lokales Minimum (weitergehende hinreichende Bedingungen siehe Satz 5.16)

Punkte "am Rand" von A separat untersuchen

Buchholz / Rudolph: Mafl 2

176