
Computational Intelligence
Winter Term 2025/26

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
2

Plan for Today

● Deep Neural Networks

 Model

 Training

● Convolutional Neural Networks

 Model

 Training

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
3

Deep Neural Networks (DNN)

DNN = Neural Network with > 3 layers

we know: L = 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?
information stored in weights of edges of network
→ more layers → more neurons → more edges → more information storable

Which additional information storage is useful?
traditionally : handcrafted features fed into 3-layer perceptron
modern viewpoint : let L-k layers learn the feature map, last k layers separate!

advantage:
human expert need not design features manually for each application domain
⇒ no expert needed, only observations!

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
4

Deep Neural Networks (DNN)

example: separate ‘inner ring‘ (i.r.) / ‘outer ring‘ (o.r.) / ‘outside‘

feature = measurable property of an observation or
numerical transformation of observed value(s)

≥ θ1

≥ θ2

≥ θ3

≥ θ4

≥ 4

≥ θ5

≥ θ6

≥ θ7

≥ θ8

≥ 4

≥ 2

≥ 2

1

2

34

5

6

78

1 0

0 1

i.r. o.r.

⇒ MLP with 3 layers and 12 neurons

Is there a simpler way?

⇒ find MLP on transformed data points (F(x), y)

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
5

Deep Neural Networks (DNN)

example: separate ‘inner ring‘ / ‘outer ring‘

• feature map

2D → 3D

• feature map

θ ≥ 9
1: outer
0: inner

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
6

Deep Neural Networks (DNN)

but: how to find useful features?

→ typically designed by experts with domain knowledge

→ traditional approach in classification:
1. design & select appropriate features
2. map data to feature space
3. apply classification method to data in feature space

modern approach via DNN: learn feature map and classification simultaneously!

L – k layers k layers

feature map classifier

x ŷ

proven: MLP can approximate any continuous map with aribitrary accuracy

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
7

Deep Multi-Layer Perceptrons

- danger: overfitting
→ need larger training set (expensive!)
→ optimization needs more time

- response landscape changes
→ more sigmoidal activiations
→ gradient vanishes
→ small progress in learning weights

contra:
- regularization / dropout

→ data augmentation
→ parallel hardware (multi-core / GPU)

- not necessarily bad
→ change activation functions
→ gradient does not vanish
→ progress in learning weights

countermeasures:

vanishing gradient: (underlying principle)

forward pass y = f3(f2(f1(x; w1); w2); w3) fi ≈ activation function

backward pass (f3(f2(f1(x; w1); w2); w3))‘ =
f3‘(f2(f1(x;w1);w2);w3) · f2‘(f1(x;w1);w2) · f1‘(x;w1) chain rule!

→ repeated multiplication of values in (0,1) → 0

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
8

Deep Multi-Layer Perceptrons

vanishing gradient:



principally: desired property in learning process!
if weights stabilize such that neuron almost always
either fires [i.e., a(x) ≈ 1] or not fires [i.e., a(x) ≈ 0]
then gradient ≈ 0 and the weights are hardly changed

⇒ leads to convergence in the learning process!

a(x)

a‘(x)

while learning, updates of weights via partial derivatives:

(L= 2 layers)

⇒ in general 

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
9

Deep Neural Networks

non-sigmoid activation functions

x

ReLU(x)

x

1

Threshold(x)

⇒

x

1

Logistic(x)

x

1

softplus(x)

⇒

1

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
10

dropout

Deep Neural Networks

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

→

- parts of network are effectively switched off
e.g. multiplication of outputs with 0,
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5

- gradient descent on switching parts of network
→ artificial perturbation of greediness during gradient descent

- can reduce computational complexity if implemented sophistically

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
11

Deep Neural Networks

data augmentation (counteracts overfitting)

→ extending training set by slightly perturbed true training examples

extra costs for acquiring additional annotated data are inevitable!

- best applicable if inputs are images: translate, rotate, add noise, resize, …

original image rotated resized noisy noisy + rotated

- if x is real vector then adding e.g. small gaussian noise
→ here, utility disputable (artificial sample may cross true separating line)

Lecture 13Deep Neural Networks

stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases

update of weights
- after each training example b = 1
- after all training examples b = |B|

now:

update of weights
- after b training examples

where 1 < b < |B|

- search in subspaces → counteracts greediness → better generalization

- accelerates optimization methods (parallelism possible)

choice of batch size b
b large ⇒ better approximation of gradient
b small ⇒ better generalization

b also depends on available hardware
b too small ⇒ multi-cores underemployed

often b ≈ 100 (empirically)

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
12

Lecture 13Deep Neural Networks

cost functions

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
13

• regression

N training samples (xi, yi)

insist that f(xi; θ) = yi for i=1,…, N

if f(x; θ) linear in θ then θTxi = yi for i=1,…, N or X θ = y

⇒ best choice for θ: least square estimator (LSE)

⇒ (X θ - y)T (X θ - y) → min!
θ

in case of MLP: f(x; θ) is nonlinear in θ

⇒ best choice for θ: (nonlinear) least square estimator; aka TSSE

⇒ Σ (f(xi; θ) – yi)2 → min!
θi

Lecture 13Deep Neural Networks

cost functions

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
14

• classification

N training samples (xi, yi) where yi ∈ { 1, …, C }, C = #classes

→ want to estimate probability of different outcomes for unknown sample

→ decision rule: choose class with highest probability (given the data)

idea: use maximum likelihood estimator (MLE)

= estimate unknown parameter θ such that likelihood of sample x1, …, xN

gets maximal as a function of θ

likelihood function

θ

Lecture 13Deep Neural Networks

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
15

here: random variable X ∈ {1, …, C } with P{ X = i } = qi (true, but unknown)

→ we use relative frequencies of training set x1, …, xN as estimator of qi

[actually: to q]

Lecture 13Deep Neural Networks

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
16

in case of classification

→ multiclass classification: probability of membership to class j = 1, …, C

→ class with maximum excitation w‘x+b has maximum probabilty

→ decision rule: element x is assigned to class with maximum probability

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
17

Convolutional Neural Networks (CNN)

layer of CNN = 3 stages

most often used in graphical applications (2-D input; also possible: k-D tensors)

1. convolution
2. nonlinear activation (e.g. ReLU)
3. pooling

K(i,j):

example

I(x,y):

1. Convolution
local filter / kernel K(i, j) applied to each cell of image I(x, y)

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
18

Convolutional Neural Networks (CNN)

example: edge detection with Sobel kernel

-1, 0, 1
-2, 0, 2
-1, 0, 1

Kx =
-1, -2, -1
0, 0, 0
1, 2, 1

Ky =

→ two convolutions

original image I(x,y) image S(x,y) after convolution

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
19

Convolutional Neural Networks

filter / kernel
well known in image processing; typically hand-crafted!

e.g. horizontal line detection

1 1 1 1

1 1 1 1

-1 -1 -1 -1

-1 -1 -1 -1

here: values of filter matrix learnt in CNN !

actually: many filters active in CNN

stride
= distance between two applications of a filter (horizontal sh / vertical sv)
→ leads to smaller images if sh or sv > 1

padding

= treatment of border cells if filter does not fit in image
• “valid“ : apply only to cells for which filter fits → leads to smaller images
• “same“ : add rows/columns with zero cells; apply filter to all cells (→ same size)

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
20

Convolutional Neural Networks

2. nonlinear activation

a(x) = ReLU(xT W + c)

3. pooling

in principle: summarizing statistic of nearby outputs

e.g. max-pooling m(i,j) = max(I(i+a, j+b) : a,b = -δ, …, 0, … δ) for δ > 0

- also possible: mean, median, matrix norm, …

- can be used to reduce matrix / output dimensions

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
21

Convolutional Neural Networks

example: max-pooling 2x2 (iterated), stride = 2

3000 x 4000

max
2x2

1500 x 2000

max
2x2

750 x 1000

375 x 500

max
2x2

187 x 250

max
2x2

93 x 125

max
2x2

46 x 62

32 x 32
pooling

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
22

Convolutional Neural Networks

Pooling with Stride

cin
rin
fc
fr
sc
sr

: columns of input
: rows of input
: columns of filter
: rows of filter
: stride for columns
: stride for rows

image size : rin x cin
filter size : fr x fc

assumptions:
fc ≤ cin
fr ≤ fin
padding = valid

How often fits the filter in image horizontally?
pos1 = 1
pos2 = pos1 + sc
pos3 = pos2 + sc = (pos1 + sc) + sc = pos1 + 2∙ sc

thus, find largest k such that
pos1 + (k – 1) ∙ sc + (fc – 1) ≤ cin

⇔ (k – 1) ∙ sc + fc ≤ cin
⇔ k ≤ (cin – fc) / sc + 1 (integer division!)

cin – fc
sc

⇒ k = + 1 = cout

[analog reasoning for rows!]

1 30
1

10

posk = pos1 + (k – 1) ∙ sc

…

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
23

Convolutional Neural Networks

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts

- flatten layer (→ converts k-D matrix to 1-D matrix required for MLP input layer)

- fully connected MLP

2-D input layer

convolution layer 1

convolution layer 2

convolution layer k

flatten layer

MLP

…

2-D input layer

convolution layer 1a convolution layer 2a

concatenate

MLP

convolution layer 1b convolution layer 2b

flatten layer flatten layer

examples:

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
24

Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

Name Year Depth #Params

LeNet 1998

AlexNet 2012 > 60 M

VGG16 2014 23 > 23 M

Inception-v1 2014

ResNet50 2014 > 25 M

Inception-v3 2015 159

Xception 2016 126 > 22 M

InceptionResNet 2017 572 > 55 M

...

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
25

Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

LeNet-5 (1998)

T = tanh
S = softmax

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
26

Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

AlexNet (2012)

T = tanh
R = ReLU
S = softmax

Used dropout

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
27

Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

VGG-16 (2014)

T = tanh
R = ReLU
S = softmax

Deeper than AlexNet

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27

