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Plan for Today

● Deep Neural Networks 

 Model

 Training

● Convolutional Neural Networks 

 Model

 Training
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Deep Neural Networks (DNN)

DNN = Neural Network with > 3 layers

we know:   L = 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?
information stored in weights of edges of network
→ more layers → more neurons → more edges → more information storable

Which additional information storage is useful?
traditionally : handcrafted features fed into 3-layer perceptron
modern viewpoint : let L-k layers learn the feature map, last k layers separate!

advantage:
human expert need not design features manually for each application domain
⇒ no expert needed, only observations!
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Deep Neural Networks (DNN)

example: separate ‘inner ring‘ (i.r.) / ‘outer ring‘ (o.r.) / ‘outside‘ 

feature = measurable property of an observation or
numerical transformation of observed value(s) 
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i.r. o.r.

⇒ MLP with 3 layers and 12 neurons

Is there a simpler way?

⇒ find MLP on transformed data points (F(x), y)
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Deep Neural Networks (DNN)

example: separate ‘inner ring‘ / ‘outer ring‘ 

• feature map

2D  →   3D

• feature map

θ ≥ 9
1: outer
0: inner
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Deep Neural Networks (DNN)

but: how to find useful features?

→ typically designed by experts with domain knowledge

→ traditional approach in classification: 
1. design & select appropriate features
2. map data to feature space
3. apply classification method to data in feature space

modern approach via DNN:  learn feature map and classification simultaneously!

L – k layers k layers

feature map classifier

x ŷ

proven: MLP can approximate any continuous map with aribitrary accuracy
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Deep Multi-Layer Perceptrons

- danger: overfitting
→ need larger training set (expensive!)
→ optimization needs more time

- response landscape changes
→ more sigmoidal activiations
→ gradient vanishes
→ small progress in learning weights

contra:
- regularization / dropout

→ data augmentation
→ parallel hardware (multi-core / GPU)

- not necessarily bad
→ change activation functions
→ gradient does not vanish
→ progress in learning weights

countermeasures:

vanishing gradient:  (underlying principle)

forward pass  y = f3(f2(f1(x; w1); w2); w3) fi ≈ activation function

backward pass  (f3(f2(f1(x; w1); w2); w3))‘ = 
f3‘(f2(f1(x;w1);w2);w3) · f2‘(f1(x;w1);w2) · f1‘(x;w1) chain rule!

→ repeated multiplication of values in (0,1) → 0
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Deep Multi-Layer Perceptrons

vanishing gradient:



principally: desired property in learning process!
if weights stabilize such that neuron almost always
either fires [i.e., a(x) ≈ 1] or not fires [i.e., a(x) ≈ 0]
then gradient ≈ 0 and the weights are hardly changed

⇒ leads to convergence in the learning process!

a(x)

a‘(x)

while learning, updates of weights via partial derivatives:

(L= 2 layers)

⇒ in general 
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Deep Neural Networks

non-sigmoid activation functions

x

ReLU(x)

x

1

Threshold(x)

⇒

x

1

Logistic(x)

x

1

softplus(x)

⇒

1
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dropout

Deep Neural Networks

- applied for regularization (against overfitting) 
- can be interpreted as inexpensive approximation of bagging

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

→

- parts of network are effectively switched off
e.g. multiplication of outputs with 0, 
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5

- gradient descent on switching parts of network
→ artificial perturbation of greediness during gradient descent

- can reduce computational complexity if implemented sophistically
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Deep Neural Networks

data augmentation (counteracts overfitting)

→ extending training set by slightly perturbed true training examples

extra costs for acquiring additional annotated data are inevitable!

- best applicable if inputs are images: translate, rotate, add noise, resize, …

original image rotated resized noisy noisy + rotated

- if x is real vector then adding e.g. small gaussian noise
→ here, utility disputable (artificial sample may cross true separating line)

Lecture 13Deep Neural Networks

stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases

update of weights
- after each training example b =  1
- after all training examples b = |B| 

now:   

update of weights
- after b training examples

where 1 < b < |B|

- search in subspaces → counteracts greediness → better generalization

- accelerates optimization methods (parallelism possible)

choice of batch size b
b large ⇒ better approximation of gradient
b small ⇒ better generalization

b also depends on available hardware
b too small ⇒ multi-cores underemployed

often b ≈ 100  (empirically)
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• regression

N training samples (xi, yi)

insist that f(xi;  θ) = yi for i=1,…, N

if f(x; θ) linear in θ then θTxi = yi for i=1,…, N  or X θ = y

⇒ best choice for θ:   least square estimator (LSE)

⇒ (X θ - y)T (X θ - y)  → min!
θ

in case of MLP: f(x; θ) is nonlinear in θ

⇒ best choice for θ:   (nonlinear) least square estimator; aka TSSE

⇒ Σ (f(xi; θ) – yi)2 → min!
θi
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• classification

N training samples (xi, yi) where yi ∈ { 1, …, C }, C = #classes

→ want to estimate probability of different outcomes for unknown sample

→ decision rule: choose class with highest probability (given the data)

idea: use maximum likelihood estimator (MLE)

= estimate unknown parameter θ such that likelihood of sample x1, …, xN

gets maximal as a function of θ

likelihood function

θ
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here: random variable X ∈ {1, …, C } with P{ X = i } = qi (true, but unknown)

→ we use relative frequencies of training set x1, …, xN as estimator of qi

[actually: to q]

Lecture 13Deep Neural Networks

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
16

in case of classification

→ multiclass classification: probability of membership to class j = 1, …, C  

→ class with maximum excitation w‘x+b has maximum probabilty

→ decision rule: element x is assigned to class with maximum probability
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Convolutional Neural Networks (CNN)

layer of CNN = 3 stages

most often used in graphical applications (2-D input; also possible: k-D tensors)

1. convolution
2. nonlinear activation (e.g. ReLU)
3. pooling

K(i,j):

example

I(x,y):

1. Convolution
local filter / kernel K(i, j) applied to each cell of image I(x, y)
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Convolutional Neural Networks (CNN)

example: edge detection with Sobel kernel

-1, 0, 1 
-2, 0, 2 
-1, 0, 1 

Kx =
-1, -2, -1 
0,  0,  0 
1,  2,  1

Ky =

→ two convolutions

original image I(x,y) image S(x,y) after convolution
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Convolutional Neural Networks

filter / kernel
well known in image processing; typically hand-crafted!

e.g. horizontal line detection

1 1 1 1

1 1 1 1

-1 -1 -1 -1

-1 -1 -1 -1

here: values of filter matrix learnt in CNN !

actually: many filters active in CNN

stride
= distance between two applications of a filter (horizontal sh / vertical sv)
→ leads to smaller images if sh or sv > 1

padding

= treatment of border cells if filter does not fit in image
• “valid“ : apply only to cells for which filter fits → leads to smaller images
• “same“ : add rows/columns with zero cells; apply filter to all cells (→ same size)  
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Convolutional Neural Networks

2. nonlinear activation

a(x) = ReLU(xT W + c)

3. pooling

in principle: summarizing statistic of nearby outputs

e.g. max-pooling m(i,j) = max( I(i+a, j+b) : a,b = -δ, …, 0, … δ ) for δ > 0 

- also possible: mean, median, matrix norm, …

- can be used to reduce matrix / output dimensions
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Convolutional Neural Networks

example:  max-pooling 2x2 (iterated), stride = 2

3000 x 4000

max
2x2

1500 x 2000

max
2x2

750 x 1000

375 x 500

max
2x2

187 x 250

max
2x2

93 x 125

max
2x2

46 x 62

32 x 32 
pooling
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Convolutional Neural Networks

Pooling with Stride

cin
rin
fc
fr
sc
sr

: columns of input
: rows of input
: columns of filter
: rows of filter
: stride for columns
: stride for rows

image size :  rin x cin
filter size :  fr x fc

assumptions:
fc ≤  cin
fr ≤  fin
padding = valid

How often fits the filter in image horizontally?
pos1 = 1
pos2 = pos1 + sc
pos3 = pos2 + sc = (pos1 + sc) + sc = pos1 + 2∙ sc

thus, find largest k such that
pos1 + (k – 1) ∙ sc + (fc – 1)  ≤  cin 

⇔ (k – 1) ∙ sc + fc ≤  cin 
⇔ k  ≤  (cin – fc) / sc + 1       (integer division!)

cin – fc
sc

⇒ k  =                 + 1  =  cout

[ analog reasoning for rows! ]

1 30
1

10

posk = pos1 + (k – 1) ∙ sc

…
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Convolutional Neural Networks

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts

- flatten layer (→ converts k-D matrix to 1-D matrix required for MLP input layer) 

- fully connected MLP

2-D input layer

convolution layer 1

convolution layer 2

convolution layer k

flatten layer

MLP 

…

2-D input layer

convolution layer 1a convolution layer 2a

concatenate

MLP 

convolution layer 1b convolution layer 2b

flatten layer flatten layer

examples:
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Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

Name Year Depth #Params

LeNet 1998

AlexNet 2012 > 60 M

VGG16 2014 23 > 23 M

Inception-v1 2014

ResNet50 2014 > 25 M

Inception-v3 2015 159

Xception 2016 126 > 22 M

InceptionResNet 2017 572 > 55 M

...
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Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

LeNet-5 (1998)

T = tanh
S = softmax
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Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

AlexNet (2012)

T = tanh
R = ReLU
S = softmax

Used dropout
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Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

VGG-16 (2014)

T = tanh
R = ReLU
S = softmax

Deeper than AlexNet


