
Computational Intelligence
Winter Term 2025/26

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
2

Plan for Today

● Deep Neural Networks

 Model

 Training

● Convolutional Neural Networks

 Model

 Training

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
3

Deep Neural Networks (DNN)

DNN = Neural Network with > 3 layers

we know: L = 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?
information stored in weights of edges of network
→ more layers → more neurons → more edges → more information storable

Which additional information storage is useful?
traditionally : handcrafted features fed into 3-layer perceptron
modern viewpoint : let L-k layers learn the feature map, last k layers separate!

advantage:
human expert need not design features manually for each application domain
⇒ no expert needed, only observations!

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
4

Deep Neural Networks (DNN)

example: separate ‘inner ring‘ (i.r.) / ‘outer ring‘ (o.r.) / ‘outside‘

feature = measurable property of an observation or
numerical transformation of observed value(s)

≥ θ1

≥ θ2

≥ θ3

≥ θ4

≥ 4

≥ θ5

≥ θ6

≥ θ7

≥ θ8

≥ 4

≥ 2

≥ 2

1

2

34

5

6

78

1 0

0 1

i.r. o.r.

⇒ MLP with 3 layers and 12 neurons

Is there a simpler way?

⇒ find MLP on transformed data points (F(x), y)

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
5

Deep Neural Networks (DNN)

example: separate ‘inner ring‘ / ‘outer ring‘

• feature map

2D → 3D

• feature map

θ ≥ 9
1: outer
0: inner

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
6

Deep Neural Networks (DNN)

but: how to find useful features?

→ typically designed by experts with domain knowledge

→ traditional approach in classification:
1. design & select appropriate features
2. map data to feature space
3. apply classification method to data in feature space

modern approach via DNN: learn feature map and classification simultaneously!

L – k layers k layers

feature map classifier

x ŷ

proven: MLP can approximate any continuous map with aribitrary accuracy

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
7

Deep Multi-Layer Perceptrons

- danger: overfitting
→ need larger training set (expensive!)
→ optimization needs more time

- response landscape changes
→ more sigmoidal activiations
→ gradient vanishes
→ small progress in learning weights

contra:
- regularization / dropout

→ data augmentation
→ parallel hardware (multi-core / GPU)

- not necessarily bad
→ change activation functions
→ gradient does not vanish
→ progress in learning weights

countermeasures:

vanishing gradient: (underlying principle)

forward pass y = f3(f2(f1(x; w1); w2); w3) fi ≈ activation function

backward pass (f3(f2(f1(x; w1); w2); w3))‘ =
f3‘(f2(f1(x;w1);w2);w3) · f2‘(f1(x;w1);w2) · f1‘(x;w1) chain rule!

→ repeated multiplication of values in (0,1) → 0

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
8

Deep Multi-Layer Perceptrons

vanishing gradient:



principally: desired property in learning process!
if weights stabilize such that neuron almost always
either fires [i.e., a(x) ≈ 1] or not fires [i.e., a(x) ≈ 0]
then gradient ≈ 0 and the weights are hardly changed

⇒ leads to convergence in the learning process!

a(x)

a‘(x)

while learning, updates of weights via partial derivatives:

(L= 2 layers)

⇒ in general 

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
9

Deep Neural Networks

non-sigmoid activation functions

x

ReLU(x)

x

1

Threshold(x)

⇒

x

1

Logistic(x)

x

1

softplus(x)

⇒

1

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
10

dropout

Deep Neural Networks

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

→

- parts of network are effectively switched off
e.g. multiplication of outputs with 0,
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5

- gradient descent on switching parts of network
→ artificial perturbation of greediness during gradient descent

- can reduce computational complexity if implemented sophistically

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
11

Deep Neural Networks

data augmentation (counteracts overfitting)

→ extending training set by slightly perturbed true training examples

extra costs for acquiring additional annotated data are inevitable!

- best applicable if inputs are images: translate, rotate, add noise, resize, …

original image rotated resized noisy noisy + rotated

- if x is real vector then adding e.g. small gaussian noise
→ here, utility disputable (artificial sample may cross true separating line)

Lecture 13Deep Neural Networks

stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases

update of weights
- after each training example b = 1
- after all training examples b = |B|

now:

update of weights
- after b training examples

where 1 < b < |B|

- search in subspaces → counteracts greediness → better generalization

- accelerates optimization methods (parallelism possible)

choice of batch size b
b large ⇒ better approximation of gradient
b small ⇒ better generalization

b also depends on available hardware
b too small ⇒ multi-cores underemployed

often b ≈ 100 (empirically)

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
12

Lecture 13Deep Neural Networks

cost functions

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
13

• regression

N training samples (xi, yi)

insist that f(xi; θ) = yi for i=1,…, N

if f(x; θ) linear in θ then θTxi = yi for i=1,…, N or X θ = y

⇒ best choice for θ: least square estimator (LSE)

⇒ (X θ - y)T (X θ - y) → min!
θ

in case of MLP: f(x; θ) is nonlinear in θ

⇒ best choice for θ: (nonlinear) least square estimator; aka TSSE

⇒ Σ (f(xi; θ) – yi)2 → min!
θi

Lecture 13Deep Neural Networks

cost functions

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
14

• classification

N training samples (xi, yi) where yi ∈ { 1, …, C }, C = #classes

→ want to estimate probability of different outcomes for unknown sample

→ decision rule: choose class with highest probability (given the data)

idea: use maximum likelihood estimator (MLE)

= estimate unknown parameter θ such that likelihood of sample x1, …, xN

gets maximal as a function of θ

likelihood function

θ

Lecture 13Deep Neural Networks

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
15

here: random variable X ∈ {1, …, C } with P{ X = i } = qi (true, but unknown)

→ we use relative frequencies of training set x1, …, xN as estimator of qi

[actually: to q]

Lecture 13Deep Neural Networks

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
16

in case of classification

→ multiclass classification: probability of membership to class j = 1, …, C

→ class with maximum excitation w‘x+b has maximum probabilty

→ decision rule: element x is assigned to class with maximum probability

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
17

Convolutional Neural Networks (CNN)

layer of CNN = 3 stages

most often used in graphical applications (2-D input; also possible: k-D tensors)

1. convolution
2. nonlinear activation (e.g. ReLU)
3. pooling

K(i,j):

example

I(x,y):

1. Convolution
local filter / kernel K(i, j) applied to each cell of image I(x, y)

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
18

Convolutional Neural Networks (CNN)

example: edge detection with Sobel kernel

-1, 0, 1
-2, 0, 2
-1, 0, 1

Kx =
-1, -2, -1
0, 0, 0
1, 2, 1

Ky =

→ two convolutions

original image I(x,y) image S(x,y) after convolution

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
19

Convolutional Neural Networks

filter / kernel
well known in image processing; typically hand-crafted!

e.g. horizontal line detection

1 1 1 1

1 1 1 1

-1 -1 -1 -1

-1 -1 -1 -1

here: values of filter matrix learnt in CNN !

actually: many filters active in CNN

stride
= distance between two applications of a filter (horizontal sh / vertical sv)
→ leads to smaller images if sh or sv > 1

padding

= treatment of border cells if filter does not fit in image
• “valid“ : apply only to cells for which filter fits → leads to smaller images
• “same“ : add rows/columns with zero cells; apply filter to all cells (→ same size)

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
20

Convolutional Neural Networks

2. nonlinear activation

a(x) = ReLU(xT W + c)

3. pooling

in principle: summarizing statistic of nearby outputs

e.g. max-pooling m(i,j) = max(I(i+a, j+b) : a,b = -δ, …, 0, … δ) for δ > 0

- also possible: mean, median, matrix norm, …

- can be used to reduce matrix / output dimensions

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
21

Convolutional Neural Networks

example: max-pooling 2x2 (iterated), stride = 2

3000 x 4000

max
2x2

1500 x 2000

max
2x2

750 x 1000

375 x 500

max
2x2

187 x 250

max
2x2

93 x 125

max
2x2

46 x 62

32 x 32
pooling

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
22

Convolutional Neural Networks

Pooling with Stride

cin
rin
fc
fr
sc
sr

: columns of input
: rows of input
: columns of filter
: rows of filter
: stride for columns
: stride for rows

image size : rin x cin
filter size : fr x fc

assumptions:
fc ≤ cin
fr ≤ fin
padding = valid

How often fits the filter in image horizontally?
pos1 = 1
pos2 = pos1 + sc
pos3 = pos2 + sc = (pos1 + sc) + sc = pos1 + 2∙ sc

thus, find largest k such that
pos1 + (k – 1) ∙ sc + (fc – 1) ≤ cin

⇔ (k – 1) ∙ sc + fc ≤ cin
⇔ k ≤ (cin – fc) / sc + 1 (integer division!)

cin – fc
sc

⇒ k = + 1 = cout

[analog reasoning for rows!]

1 30
1

10

posk = pos1 + (k – 1) ∙ sc

…

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
23

Convolutional Neural Networks

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts

- flatten layer (→ converts k-D matrix to 1-D matrix required for MLP input layer)

- fully connected MLP

2-D input layer

convolution layer 1

convolution layer 2

convolution layer k

flatten layer

MLP

…

2-D input layer

convolution layer 1a convolution layer 2a

concatenate

MLP

convolution layer 1b convolution layer 2b

flatten layer flatten layer

examples:

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
24

Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

Name Year Depth #Params

LeNet 1998

AlexNet 2012 > 60 M

VGG16 2014 23 > 23 M

Inception-v1 2014

ResNet50 2014 > 25 M

Inception-v3 2015 159

Xception 2016 126 > 22 M

InceptionResNet 2017 572 > 55 M

...

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
25

Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

LeNet-5 (1998)

T = tanh
S = softmax

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
26

Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

AlexNet (2012)

T = tanh
R = ReLU
S = softmax

Used dropout

Lecture 13

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
27

Convolutional Neural Networks

Popular CNN Architectures https://towardsdatascience.com

VGG-16 (2014)

T = tanh
R = ReLU
S = softmax

Deeper than AlexNet

