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e Deep Neural Networks
= Model

® Training

e Convolutional Neural Networks
= Model

= Training

technische universitat

G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 2
Deep Neural Networks (DNN) Deep Neural Networks (DNN)
DNN = Neural Network with > 3 layers example: separate ‘inner ring‘ (i.r.) / ‘outer ring‘ (o.r.) / ‘outside
6 ] w'i - - . ‘_‘: = >o
we know: L = 3 layers in MLP sufficient to describe arbitrary sets ¢ 0 P ‘%r- °(-)'-
L : '

What can be achieved by more than 3 layers?

information stored in weights of edges of network
— more layers — more neurons — more edges — more information storable

Which additional information storage is useful?

traditionally : handcrafted features fed into 3-layer perceptron
modern viewpoint : let L-k layers learn the feature map, last k layers separate!

H_/

advantage:
human expert need not design features manually for each application domain

= no expert needed, only observations!
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= MLP with 3 layers and 12 neurons

Is there a simpler way?
observations (z,y) € R” x B

feature map F(z) = (Fi(x),..., Fu(x)) € R™

feature = measurable property of an observation or
numerical transformation of observed value(s)

= find MLP on transformed data points (F(x), y)
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Deep Neural Networks (DNN)

example: separate ‘inner ring‘ / ‘outer ring’
e feature map F(x) = (21,22, /2% +23) € R3
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Deep Neural Networks (DNN)

but: how to find useful features?

— typically designed by experts with domain knowledge

— traditional approach in classification:
1. design & select appropriate features
2. map data to feature space
3. apply classification method to data in feature space

modern approach via DNN: learn feature map and classification simultaneously!

L — k layers — klayers —— ¥

N 2N J
Y

feature map classifier

proven: MLP can approximate any continuous map with aribitrary accuracy
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Deep Multi-Layer Perceptrons Deep Multi-Layer Perceptrons
N . e’ 1
contra: countermeasures: vanishing gradient: a(z) = e g d(z) = a(z) - (1 - a(z))
- danger: overfitting - regularization / dropout 1 1\2
— need larger training set (expensive!) — data augmentation VzeR: a(z)-(1-a(z)) < 1 © (a(f) - 5) >0 ™
— optimization needs more time — parallel hardware (multi-core / GPU) ] 12F v ,
: = gradient /() € [0, 1]
- response landscape changes - not necessarily bad 1 a(x)
— more sigmoidal activiations — change activation functions principally: desired property in learning process! 08
— gradient vanishes — gradient does not vanish if weights stabilize such that neuron almost always |
— small progress in learning weights — progress in learning weights either fires [i.e., a(x) = 1] or not fires [i.e., a(x) = 0] o4
then gradient = 0 and the weights are hardly changed o2} / a'(x)
o ) _ o = leads to convergence in the learning process! D
vanishing gradient: (underlying principle)
forward pass y = F3(fo(F, (6 Wy ); W,); W) f, = activation function while learning, updatis of weights via partial derivatives:
Of (w,u; 2, 2*) / * 1eo 1ot _
backward pass  (f5(fo(f;(X; Wy); W,); Wy))' = T owy, 2 la(upy) — 2] - @' (upy) - wyy, - o' (wjz) - @ (L= 2 layers)
£ (Fo(F G W )W) wig) = £ (F (s wy );wo) - Fif(xwy) chain rule! k=1 <1 < L

— repeated multiplication of values in (0,1) —» 0
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= ingeneral fu,, =04 %) = 0as L1
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L < 3: effect neglectable; but L > 3
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Deep Neural Networks

non-sigmoid activation functions

0
/1[z>0}($) dv = { .

Threshold(x) |

if v <0

> 0 } = max{0,z} = ReLU(x)

ReLU(x)

=y
-

X
PI
— dx =log(1 + ") = softplus(x
[ e =tog(1 4 %) = softplusi)
Logistic(x) softplus(x)
=
1
| x
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Deep Neural Networks
dropout

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

!

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

- parts of network are effectively switched off
e.g. multiplication of outputs with O,
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5

- gradient descent on switching parts of network
— artificial perturbation of greediness during gradient descent

- can reduce computational complexity if implemented sophistically
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Deep Neural Networks

data augmentation (counteracts overfitting)

— extending training set by slightly perturbed true training examples

- best applicable if inputs are images: translate, rotate, add noise, resize, ...

original image rotated noisy noisy + rotated

resized

- if x is real vector then adding e.g. small gaussian noise
— here, utility disputable (artificial sample may cross true separating line)

extra costs for acquiring additional annotated data are inevitable!
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Deep Neural Networks
stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases now:
update of weights

- after each training example
- after all training examples

update of weights
b= 1 - after b training examples
b = |B| where 1 <b < |B]|

- search in subspaces — counteracts greediness — better generalization

- accelerates optimization methods (parallelism possible)

choice of batch size b

blarge = better approximation of gradient

b small = better generalization .
often b=100 (empirically)

b also depends on available hardware

b too small = multi-cores underemployed
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Deep Neural Networks

cost functions

® regression
N training samples (x;, y;)
insist that f(x; 0)=vy; fori=1,...,N
if f(x; 0) linear in 6 then 07x, = y; fori=1,..., N or X0 =y
= best choice for 0: least square estimator (LSE)
=>X0-y)T(X0-y) —>mein!

in case of MLP: f(x; 0) is nonlinear in 6

= best choice for 8: (nonlinear) least square estimator; aka TSSE
= I (f(x; 0) — y;)2 — min!
i 0
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Deep Neural Networks

cost functions

* classification
N training samples (x;, y;) where y, € {1, ..., C}, C =#classes
— want to estimate probability of different outcomes for unknown sample

— decision rule: choose class with highest probability (given the data)

idea: use maximum likelihood estimator (MLE)
= estimate unknown parameter 6 such that likelihood of sample x,, ..., Xy

gets maximal as a function of 6

likelihood function N
L(O:xr....oaon) = fxpxy (@ ani0) = [ [ fx(ei6) = max!
i=1
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Deep Neural Networks
here: random variable X € {1, ..., C} with P{ X =i} = q; (true, but unknown)

— we use relative frequencies of training set x4, ..., Xy as estimator of g;

1 o
6= > 14— = thereare N - samples of class i in training set
o=t
= the neural network should output p as close as possible to ¢! [actually: to q]
N C )
likelihood L(p:x1.....an) = [[ P{Xk = o} = [] 5% — max!
k=1 =1
C C ) C
log L = log (Hﬁ,‘;\ q’) = Z log pi 4 = N Z Gi - log p; — max!
1=1 =1 1=1
N—— —
—H(q.,p)

= maximizing log L leads to same solution as minimizing cross-entropy H (g, p)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 15

Deep Neural Networks

in case of classification

,)'U‘,TJ‘+[)]
use softmax function P{y = j |2} = —z——=—— in output layer
Zi’:l ew; T+b;
— multiclass classification: probability of membershiptoclassj=1,...,C

— class with maximum excitation w'x+b has maximum probabilty

— decision rule: element x is assigned to class with maximum probability
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Convolutional Neural Networks (CNN) iéﬁé;

most often used in graphical applications (2-D input; also possible: k-D tensors)

-4 1)
layer of CNN = 3 stages Ymin Al 21]=s
1. convolution I(x,y): KGij:| 1111
2. nonlinear activation (e.g. ReLU) 20125
3. pooling

example
Ymax
Tmin Tmax

1. Convolution
local filter / kernel K(i, j) applied to each cell of image I(x, y)
5 s
S(@,y) = (K+D(x,y) = Y > He+iy+5) K(i,j)
i=—8 j=—6

ranges:

- without padding: * = Zymin + 6, -+, Tmax — 6 ¥ = Ymin + 0, - -+, Ymax — O

Convolutional Neural Networks (CNN) iéﬁé;

example: edge detection with Sobel kernel

— two convolutions

-1,0,1 -1,-2, -1

Ke=1-2,0,2 Ky=1 0,0, 0
-1,0,1 1,21 S(z,y) = V/Sx(w,y)? + Gy (2,y)?
yields S, yields S,

original image I(x,y) image S(x,y) after convolution
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Convolutional Neural Networks

filter / kernel

well known in image processing; typically hand-crafted! 11 1 1
here: values of filter matrix learnt in CNN ! 1 11
I I

actually: many filters active in CNN

e.g. horizontal line detection
stride

= distance between two applications of a filter (horizontal s, / vertical s,)
— leads to smaller images if s, or s, > 1

padding

= treatment of border cells if filter does not fit in image

e “valid“ : apply only to cells for which filter fits — leads to smaller images
e “same”: add rows/columns with zero cells; apply filter to all cells (— same size)

Convolutional Neural Networks

oo 13

2. nonlinear activation

a(x) = ReLU(X™ W + c)

3. pooling
in principle: summarizing statistic of nearby outputs
e.g. max-pooling m(i,j) = max( I(i+a, j+b):a,b=-5, ...,0,...0)ford>0

- also possible: mean, median, matrix norm, ...

- can be used to reduce matrix / output dimensions
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Convolutional Neural Networks

example: max-pooling 2x2 (iterated), stride = 2

3000 x 4000

375 x 500
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1500 x 2000 750 x 1000
-
]
2x2 &
93x 125 46 x 62
187 x 250 32 x 32
pooling
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Convolutional Neural Networks

Pooling with Stride

Cn, :columns of input
i, :rows of input

f,  :columns of filter
f. :rows of filter

s, . stride for columns
s, :stride for rows

=

image size : r,, X ¢,
filter size : f. xf,

assumptions:
f(; = Cin
f. < f

padding = valid
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How often fits the filter in image horizontally?
pos,; =1

pos; = pos; + 8,

POS3 = POS, + S; = (POS; + S.) + 5. = pos; + 2+ ¢
pbsk =pos; +(k—1) s,

thus, find largest k such that
pos;+ (k—1) s.+(f.—1) < ¢,

& (k—=1)-s.+f, < ¢,

= k < (c,—f)/s.+1 (integer division!)
Cn—T

S EI= PR

[ analog reasoning for rows! ]
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Convolutional Neural Networks

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts

- flatten layer (— converts k-D matrix to 1-D matrix required for MLP input layer)

- fully connected MLP

examples:
2-D input layer
v

convolution layer 1

2-D input layer
v v

convolution layer 1a  convolution layer 2a

v v v
convolution layer 2 convolution layer 1b  convolution layer 2b
v v v
v flatten layer flatten layer
convolution layer k \ /
v
flatten layer concatenate
v ¥
MLP MLP
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Convolutional Neural Networks

Popular CNN Architectures

Name Year Depth
LeNet 1998

AlexNet 2012

VGG16 2014 23
Inception-v1 2014
ResNet50 2014
Inception-v3 2015 159
Xception 2016 126
InceptionResNet 2017 572
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https://towardsdatascience.com

#Params

>60 M
>23M

>25M

>22M
>55M
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Convolutional Neural Networks Convolutional Neural Networks iéﬁéi

Popular CNN Architectures https://towardsdatascience.com Popular CNN Architectures https://towardsdatascience.com
LeNet-5 (1998) AlexNet (2012)
2x2 2%2 input
32x32x1 224x224%3
4096 4096 1000
120 84 10
T =tanh T =tanh Used dropout
S = softmax R =RelLU
S = softmax
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Convolutional Neural Networks M
Popular CNN Architectures https://towardsdatascience.com

VGG-16 (2014)

_ max-pool

224%224x3

4096 4096 1000

T =tanh Deeper than AlexNet
R=RelLU
S = softmax
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