
Computational Intelligence
Winter Term 2025/26

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
2

Plan for Today

● Multi-Layer-Perceptron

 Model

 Backpropagation

● Typical Fields of Application

 Classification

 Prediction

 Function Approximation



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
3

What can be achieved by adding a layer?

● Single-layer perceptron (SLP)

⇒ Hyperplane separates space in two subspaces

● Two-layer perceptron

⇒ arbitrary convex sets can be separated

● Three-layer perceptron

⇒ arbitrary sets can be partitioned into convex subsets,

P

N

connected by
AND gate in 

2nd layer

convex subsets representable by 2nd layer,

resulting sets can be combined in 3rd layer

⇒ more than 3 layers not necessary (in principle)

Multi-Layer Perceptron (MLP)

convex sets
of 2nd layer

connected by
OR gate in 
3rd layer



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
4

XOR with 3 neurons in 2 steps

x1 x2 y1 y2 z

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

≥ 2

x1

x2

-1 1

-1

y1

z

1y2

1

1

convex set

Multi-Layer Perceptron (MLP)

,



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
5

XOR with 3 neurons in 2 layers

x1 x2 y1 y2 z

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

≥ 1

≥ 1

x1

x2

-1 1

1

y1

z

≥ 1 1y2

1

-1

without AND gate in 2nd layer

Multi-Layer Perceptron (MLP)

x1 – x2 ≥  1
x2 – x1 ≥  1 

x2 ≤  x1 – 1
x2 ≥  x1 + 1 

,
1

1



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
6

XOR can be realized with only 2 neurons!

≥ 2 ≥ 1

x1

x2

1

1

-2
1

1

y z

x1 x2 y -2y x1-2y+x2 z

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 0 1 1

1 1 1 -2 0 0

BUT: this is not a layered network (no MLP) !

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
7

Multi-Layer Perceptron (MLP)

Evidently:

MLPs deployable for addressing significantly more difficult problems than SLPs!

But:

How can we adjust all these weights and thresholds?

Is there an efficient learning algorithm for MLPs?

History:

Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation

Actually proposed by Werbos (1974) 

... but unknown to ANN researchers (was PhD thesis)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
8

Quantification of classification error of MLP

● Total Sum Squared Error (TSSE)

output of net 
for weights w and input x

target output of net 
for input x

● Total Mean Squared Error (TMSE)

TSSE

# training patters # output neurons
const.

leads to same 
solution as TSSE

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
9

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

... ... ...

1
...

2

m

1

2

x1

x2

xn

w11

wnm

u11

f(wt, ut) = TSSE   →   min!

Gradient method

ut+1 = ut - γ ∇u f(wt, ut)

wt+1 = wt - γ ∇w f(wt, ut)

Multi-Layer Perceptron (MLP)

idea: minimize error!

idea: find smooth activation function similar to original function !

BUT:

f(w, u) cannot be differentiated!

Why?  → Discontinuous activation function a(.) in neuron!
θ

0
1



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
10

good idea: sigmoid activation function (instead of signum function)
θ

0
1

0

1

• monotone increasing

• differentiable

• non-linear

• output ∈ [0,1] instead of ∈ { 0, 1 }

• threshold θ integrated in
activation functione.g.:

●

●

values of derivatives directly 
determinable from function 
values

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
11

Gradient method

... ... ...

1
...

2

J

1

2

x1

x2

xI

w11

wnm

u11

f(wt, ut) = TSSE

ut+1 = ut - γ ∇u f(wt, ut)

wt+1 = wt - γ ∇w f(wt, ut)

K

z1

z2

zK

y1

y2

yJ
yj : values after first layer

zk: values after second layer

xi : inputs

yj = h(·)

zk = a(·)

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
12

output of neuron j 
after 1st layer

output of neuron k 
after 2nd layer

error of input x:

target output for input xoutput of net

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
13

error for input x and target output z*:

total error for all training patterns (x, z*) ∈ B:

(TSSE)

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
14

gradient of total error:

thus:

and

vector of partial derivatives w.r.t. 
weights ujk and wij

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
15

assume: ⇒

and:

chain rule of differential calculus:

outer 
derivative

inner 
derivative

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
16

partial derivative w.r.t. ujk:

“error signal“  δk

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
17

partial derivative w.r.t. wij:

error signal δk from previous layer

factors 
reordered

error signal δj from “current“ layer

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
18

Generalization (> 2 layers)

Let neural network have L layers S1, S2, ... SL.

Let neurons of all layers be numbered from 1 to N.

All weights wij are gathered in weights matrix W.

Let oj be output of neuron j.

j ∈ Sm → 
neuron j is in 
m-th layer

error signal:

correction:
in case of online learning: 
correction after each test pattern presented

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
19

error signal of neuron in inner layer determined by

● error signals of all neurons of subsequent layer and

● weights of associated connections.

⇒

● First determine error signals of output neurons,

● use these error signals to calculate the error signals of the preceding layer,

● use these error signals to calculate the error signals of the preceding layer, 

● and so forth until reaching the first inner layer.

⇒
thus, error is propagated backwards from output layer to first inner layer
⇒ backpropagation (of error)

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
20

⇒ other optimization algorithms deployable!
in addition to backpropagation (gradient descent) also:

● Backpropagation with Momentum
take into account also previous change of weights:

● QuickProp
assumption: error function can be approximated locally by quadratic function,
update rule uses last two weights at step t – 1 and t – 2.

● Resilient Propagation (RPROP)
exploits sign of partial derivatives:
2 times negative or positive → increase step size! 
change of sign → reset last step and decrease step size!
typical values: factor for decreasing 0,5 / factor for increasing 1,2 

● Evolutionary Algorithms
individual = weights matrix

Multi-Layer Perceptron (MLP)



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
21

Application Fields of ANNs

Classification

given: set of training patterns (input / output) output = label 
(e.g. class A, class B, ...)

training patterns
(known)

weights
(learnt)

input
(unknown)

output
(guessed)

parameters

phase I:

train network

phase II:

apply network 
to unkown 
inputs for 
classification



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
22

Application Fields of ANNs

Prediction of Time Series

time series x1, x2, x3, ...       (e.g. temperatures, exchange rates, ...)

task: given a subset of historical data, predict the future

predictor

...

phase I:

train network

phase II:

apply network 
to historical 
inputs for 
predicting 
unkown
outputs

training patterns: 

historical data where true output is known;

error per pattern =



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
23

Application Fields of ANNs

Prediction of Time Series: Example for Creating Training Data

given: time series 10.5, 3.4, 5.6, 2.4, 5.9, 8.4, 3.9, 4.4, 1.7

time window: k=3

(10.5, 3.4, 5.6)

known
input

2.4

known
output

first input / output pair

further input / output pairs: (3.4, 5.6, 2.4) 5.9
(5.6, 2.4, 5.9) 8.4

(2.4, 5.9, 8.4)
(5.9, 8.4, 3.9)

(8.4, 3.9, 4.4)

3.9
4.4

1.7



Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
24

Application Fields of ANNs

Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

→ should give outputs close to true unkown function for arbitrary inputs

• values between training patterns are interpolated

• values outside convex hull of training patterns are extrapolated

x
x

x x
x

x

x

x : input training pattern

: input pattern where output 
to be interpolated

: input pattern where output 
to be extrapolated


	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24

