technische universitat
dortmund

Computational Intelligence
Winter Term 2025/26

Prof. Dr. Gunter Rudolph
Computational Intelligence
Fakultat fur Informatik

TU Dortmund

Plan for Today

e Multi-Layer-Perceptron
= Model

= Backpropagation

e Typical Fields of Application
= (Classification
= Prediction

» Function Approximation

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2025/26
2

Multi-Layer Perceptron (MLP)

What can be achieved by adding a layer?

e Single-layer perceptron (SLP) \<D
N

= Hyperplane separates space in two subspaces

[Two-Iayer perceptron
connected by

— arbitrary convex sets can be separated AND gate in
2nd layer

e Three-layer perceptron

= arbitrary sets can be partitioned into convex subsets, convex sets

I
|
| of 2nd layer
I

convex subsets representable by 2nd layer, | connected by
: OR gate in

resulting sets can be combined in 3rd layer | 3rd layer

= more than 3 layers not necessary (in principle)
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 3

Multi-Layer Perceptron (MLP)

XOR with 3 neurons in 2 steps

O
1 1 convex set
X1 +X2 =2 3 X2 2 5 —X1
3 ’ 3
—X] —X2 2 —3 X < 5 —X1 PS \\>
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 4

Multi-Layer Perceptron (MLP)

XOR with 3 neurons in 2 layers

without AND gate in 2nd layer
X1 —X,2 1 X, S X — 1
Xo—=X;2 1|7 [X,2 %, +1

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2025/26
5

Multi-Layer Perceptron (MLP)

XOR can be realized with only 2 neurons!

-2y | X22y+X, | Z

2
—
—
o
o
o|l ol o|«<
o
o
o

0 1 1
1
% 110 0 1 1
X2
111111 -2 0 0
BUT: this is not a layered network (no MLP) !
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 6

Multi-Layer Perceptron (MLP)

Evidently:
MLPs deployable for addressing significantly more difficult problems than SLPs!

But:
How can we adjust all these weights and thresholds?

|s there an efficient learning algorithm for MLPs?

History:
Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation
Actually proposed by Werbos (1974)

... but unknown to ANN researchers (was PhD thesis)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 7

Multi-Layer Perceptron (MLP)

Quantification of classification error of MLP

e Total Sum Squared Error (TSSE)

fw) =Y |lg(w;z) — g*(@)|?
reB

output of net target output of net
for weights w and input x for input x

e Total Mean Squared Error (TMSE)

w) = ——— w, xr) — 2 #
Fw) = g ; X lla(wix) =g @I = [Tsse

/ '\ const.

training patters # output neurons
leads to same

solution as TSSE

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 8

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

idea: minimize error!
f(w, u) =TSSE — min!

Wi4

Gradient method

U1 = Ug-v V, flw, uy
W1 =W -1V, flwy,)
_ a(z) = 1 ifx>0
BUT: | 0 otherwise
: : |
f(w, u) cannot be differentiated! c 1
Why? — Discontinuous activation function a(.) in neuron! 0——-L
0

idea: find smooth activation function similar to original function !

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 9

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)
E— 1

good idea: sigmoid activation function (instead of signum function) 00—+
0

1

* monotone increasing

« differentiable

0

* non-linear
* output € [0,1] instead of € {0, 1}
* threshold 0 integrated in

e.g.: activation function

1 N
o a(x)=—— d()=a(x)(1-a=)) o |
1+e® values of derivatives directly
_ 1N (12 determinable from function
e a(x)=tanh(x) a(zx) =(1—a“(z)) values

J

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
10

dortmund

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Gradient method

f(w, u,) = TSSE

Utsq = U -y Vy flwg, uy)
Wi, 1 =w, -y V, f(w, u)
X; : inputs

y;: values after first layer

z,: values after second layer

technische universitat
dortmund

X4
Xo
X

)

2

%

—

G. Rudolph: Computational Intelligence = Winter Term 2025/26
11

Multi-Layer Perceptron (MLP)

output of neuron |
after 1st layer

&
|
>=
PR
]~
&
Q.

NH
N~ —
I
>
7\

S
O~
8
N’

=1
4 tput of K
_ | / output of neuron
ke — A Zl ujk i | = aluy) aftepr 2nd layer
j:

error of input x:

K K

fwuiz) = Y (@) —2(2))° = Y (z—21)°

k=1 T T k=1

output of net target output for input x

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund

12

Multi-Layer Perceptron (MLP)

H *.
error for input x and target output z*: w;-:rz
4 A A\
K J I 2
. * I
flw,ujz,2") = > |a Zujk'h Zwij-azi — z1(x)
k=1 j=1 i=1
- J
h'd
Yj
— !
——
%k
total error for all training patterns (x, z*) € B:
flwuw) =) fw,u;z,2%) (TSSE)
(z,2z*)eB
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 13

Multi-Layer Perceptron (MLP)

gradient of total error:

Viww) = Y Vf(w,uz,z") vector of partial derivatives w.r.t.
(x,2*)EB weights u; and w;
thus:
af(wau) Z 8f(w,u,x,z*)
x,2*)eB J
and
Of (w,u) Of (w,u; x,z*)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 14

Multi-Layer Perceptron (MLP)

1 da(x)
=
l14+e % dx

=d'(z) = a(z) - (1 - a())

assume: a(x) =

and: h(z) = a(x)

chain rule of differential calculus:

[p(g(z))] = P'(q(=)) - ¢'(x)

Y Y

outer inner
derivative derivative

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 15

Multi-Layer Perceptron (MLP)

K
flwu;z,2*) = Y [a(upy) — 25]°
k=1

partial derivative w.r.t. uy:

of (w,u; x, z*)

= 2la(uy) —]) -y
J

= 2[a(ujy) — 2] - alujy) - (1 — alupy)) - y;

2z — 2] - 25 - (1 — 2g) - y;

N\ /
v

“error signal® §,

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
16

dortmund

Multi-Layer Perceptron (MLP)

partial derivative w.r.t. w;:

of (w,u; x, z*)

2 z [a(uly)—=] - o (uly) - ujp - B () -

2L Zk(l _Zk) Yy (1 y])
K
= 2> [zp—2i] 21 (L—2) - ujp-y; (1 —y;) -
k=1
factors
reordered K
= x;-y;-(L=y;)- Y 2-[zp—25]-26- (L —2) -ujy
k=1\ v y,

error signal 6, from previous layer

N

error signal §; from “current” layer

G. Rudolph: Computational Intelligence = Winter Term 2025/26

technische universitat -~

dortmund

Multi-Layer Perceptron (MLP)

Generalization (> 2 layers)

Let neural network have L layers S, S,, ... S,. € Sm—
neuron j is in
Let neurons of all layers be numbered from 1 to N. m-th layer

All weights w; are gathered in weights matrix W.

Let o; be output of neuron j.

error signal:
(0 - (1—05) - (0j — 2%) if j € S; (output neuron)
5j = < e .
Oj-(l—Oj)- Z 5kw]k if 7€ Sm and m < L
\ kESm+1
correction:
(t+1) _ (&) o S in case of online learning:
w; — W, Y Of J correction after each test pattern presented
J J
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 18

Multi-Layer Perceptron (MLP)

error signal of neuron in inner layer determined by
e error signals of all neurons of subsequent layer and

e weights of associated connections.

U

e First determine error signals of output neurons,
e use these error signals to calculate the error signals of the preceding layer,
e use these error signals to calculate the error signals of the preceding layer,

e and so forth until reaching the first inner layer.
U

thus, error is propagated backwards from output layer to first inner layer
= backpropagation (of error)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 19

Multi-Layer Perceptron (MLP)

= other optimization algorithms deployable!

in addition to backpropagation (gradient descent) also:

e Backpropagation with Momentum
take into account also previous change of weights:

t t—1
sz'(j) = =710, 0 — V2" Awi(j)
e QuickProp
assumption: error function can be approximated locally by quadratic function,

update rule uses last two weights at stept—1and t-— 2.

e Resilient Propagation (RPROP)
exploits sign of partial derivatives:
2 times negative or positive — increase step size!
change of sign — reset last step and decrease step size!
typical values: factor for decreasing 0,5 / factor for increasing 1,2

e Evolutionary Algorithms
individual = weights matrix

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 20

Application Fields of ANNs

Classification

given: set of training patterns (input / output) output = label

T T (e.g. class A, class B, ...)

Ly Yi

parameters
A
- N\
f(mr (xlayl)a) ($m7 ym)7w17 R 7wn) — Y
— 7 \U J
l Y Y l
input training patterns weights output
(unknown) (known) (learnt) (guessed)

technische universitat
dortmund

phase I:

train network

phase ll:

apply network
to unkown
inputs for
classification

G. Rudolph: Computational Intelligence = Winter Term 2025/26

21

Application Fields of ANNs

Prediction of Time Series

time series x4, Xy, X, ... (e.g. temperatures, exchange rates, ..

task: given a subset of historical data, predict the future

f(op_ Ty g1, Ty WL, o, Wn) — Ty oy

™~/ |

)

phase I:

train network

predictor phase II:
| apply network
to historical
inputs for
training patterns: predicting
historical data where true output is known; unkown
error per pattern = (Zy1; — T44.7)2 outputs
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund

22

Application Fields of ANNs

Prediction of Time Series: Example for Creating Training Data

given: time series 10.5,3.4,5.6,2.4,5.9,84,3.9,4.4,1.7

: - /
time window: k=3 hd
(10.5,3.4,5.6) 2.4 first input / output pair
\ _/
Y

known known
input output

further input / output pairs: (3.4, 5.6, 2.4) 5.9
(5.6, 2.4, 5.9) 8.4
(2.4, 5.9, 8.4) 3.9
(5.9, 8.4, 3.9) 4.4
(8.4, 3.9, 4.4) 1.7
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 23

Application Fields of ANNs

Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

— should give outputs close to true unkown function for arbitrary inputs

* values between training patterns are interpolated

» values outside convex hull of training patterns are extrapolated

A X : input training pattern

o X ° : input pattern where output
to be interpolated

X A input pattern where output
to be extrapolated

v

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 24

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24

