technische universitat
dortmund

Computational Intelligence
Winter Term 2025/26

Prof. Dr. Gunter Rudolph
Computational Intelligence
Fakultat fur Informatik

TU Dortmund

Plan for Today

o Multi-Layer-Perceptron
= Model

= Backpropagation

e Typical Fields of Application
= Classification
= Prediction

= Function Approximation

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2025/26
2

Multi-Layer Perceptron (MLP)

What can be achieved by adding a layer?

e Single-layer perceptron (SLP) \\P
N

= Hyperplane separates space in two subspaces

e Two-layer perceptron
connected by

= arbitrary convex sets can be separated AND gate in
2nd layer

e Three-layer perceptron

= arbitrary sets can be partitioned into convex subsets, convex sets

|
|
I of 2nd layer
|
convex subsets representable by 2nd layer, i connected by
: OR gate in
resulting sets can be combined in 3rd layer | 3rd layer
= more than 3 layers not necessary (in principle)
technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26
dortmund 3

Multi-Layer Perceptron (MLP)

XOR with 3 neurons in 2 steps

1
X»] 1
> = Y11
1 2 \
=2 |4
1 /
> 3 1
% = 2Y2
2
-1
X1+ Xy > % Xg 2> %_Xl
—X1 =Xz > —3 ’ x2 < 3-x

technische universitat
dortmund

convex set

G. Rudolph: Computational Intelligence = Winter Term 2025/26
4

Multi-Layer Perceptron (MLP)

XOR with 3 neurons in 2 layers

X{ | X2 [Y1 |Y2| 2
olololo]o
1% ol1]o]1]1

without AND gate in 2nd layer

Xi—Xy 2 1 X, £ X —1
X=X 2 1|7 [X2 X+ 1

G. Rudolph: Computational Intelligence * Winter Term 2025/26
5

technische universitat
dortmund

Multi-Layer Perceptron (MLP)

XOR can be realized with only 2 neurons!

X1 | Xo | Y [-2y | X4-2y+X, | Z

. M olofo]fo o |o
o Y2 >1 4 o|1/0]o0 1 1
M 1]o]o]o 1 1
& 11112 o o

BUT: this is not a layered network (no MLP) !

G. Rudolph: Computational Intelligence = Winter Term 2025/26
6

technische universitat
dortmund

Multi-Layer Perceptron (MLP)

Evidently:
MLPs deployable for addressing significantly more difficult problems than SLPs!

But:
How can we adjust all these weights and thresholds?

Is there an efficient learning algorithm for MLPs?

History:
Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation
Actually proposed by Werbos (1974)

... but unknown to ANN researchers (was PhD thesis)

G. Rudolph: Computational Intelligence * Winter Term 2025/26
7

technische universitat
dortmund

Multi-Layer Perceptron (MLP)

Quantification of classification error of MLP

e Total Sum Squared Error (TSSE)

Fw) =Y [l g(w;x) — g* ()2

zeB
%(_)
output of net target output of net
for weights w and input x ~ for input x
e Total Mean Squared Error (TMSE)
1 . * 2 1
fw)=—— 3" [lg(w;z) — g"(@)||* = 75—, TSSE
|B| - £ |B| - ¢
T€EB
/
const.
training patters # output neurons AN

leads to same

solution as TSSE

G. Rudolph: Computational Intelligence = Winter Term 2025/26

technische universitat o

dortmund

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

idea: minimize error!
f(w, u) =TSSE — min!

W4

Gradient method

Utsq =u-v Vy flw, uy)
Wi =w -y V,, f(wg, up
. a(z) = 1 fx>0
BUT: 1 0 otherwise
. . |
f(w, u) cannot be differentiated! e 1
Why? — Discontinuous activation function a(.) in neuron! 0—-=L
0

idea: find smooth activation function similar to original function !

technische universitat
dortmund

G. Rudolph: Computational Intelligence * Winter Term 2025/26

9

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

E—1
good idea: sigmoid activation function (instead of signum function) 00—
0

1

* monotone increasing

« differentiable

* non-linear

« output € [0,1] instead of € {0, 1}

« threshold 6 integrated in
e.g.: activation function

1 ! — a\x —alx
O L OICRLO)

e a(zx) =tanh(z)

a\r) —
o al@) values of derivatives directly

determinable from function
values

d(z) = (1 - a*(x))

technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26
dortmund 10

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Gradient method

f(w, u,) = TSSE

Ut = U-y Vy flwg, wy)
Wi =w; -7V, f(w, u)
X; : inputs

y;: values after first layer

z,: values after second layer

technische universitat
dortmund

G. Rudolph: Computational Intelligence * Winter Term 2025/26

1"

Multi-Layer Perceptron (MLP)

output of neuron j
after 1st layer

output of neuron k
after 2nd layer

error of input x:
K K

fwuiz) = 3 (p(e)—zi(@))* = 3 (z—20)°
k=1 T T k=1
output of net target output for input x

technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26
dortmund 12

Multi-Layer Perceptron (MLP)

error for input x and target output z*:

2

K J 1

flwuie,z) = Y. [(i (Z w))) ZZ(”]
k=1 Jj=1 =1
%/—/
Yj
2k
total error for all training patterns (x, z*) € B:
flww) = > flw,u;z,2) (TSSE)
(z,2*)EB

technische universitat
dortmund

G. Rudolph: Computational Intelligence * Winter Term 2025/26

13

Multi-Layer Perceptron (MLP)

gradient of total error:

Vi(w,u) = Z Vf(w,u; z,2*) vector of partial derivatives w.r.t.
(z,2*)EB weights uy and w;

thus:

of(ww) _ g~ Of(wuiz,2)
(z,z*)EB J

and

of(ww) _ g Of(wuiz,z)

8wij (m,z*)GB 8wz-j

technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26
dortmund 14

Multi-Layer Perceptron (MLP)

assume: a(z) = # = dc;im) =d(z) = a(z) - (1 —a(x))
and: h(z) = a(z)

chain rule of differential calculus:
[p(q(z))]) = p'(¢(x)) - ¢'(x)
—

outer inner
derivative derivative

technische universitat

G. Rudolph: Computational Intelligence * Winter Term 2025/26

dortmund 15

Multi-Layer Perceptron (MLP)

K
flwuia,2*) = 37 [aujy) — 2]
k=1

partial derivative w.r.t. u:

of (w, u; ,2")

= 2[a(upy) — 21 d'(upy) - y;

= 2[alupy) — 251 alupy) - (1 = a(upy)) - v,

= 2[zp — 2] 2 (1 — 2) -y

— _/
—~

“error signal® g,

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 16

Multi-Layer Perceptron (MLP)

partial derivative w.r.t. w:

: * K
U2 o S~ a(uhy)—24] - o' Cuhy) - wjp - W (o) -

awij k=1 -
2 zp (1 —zp) v (1 —yj)
K
= 2. [z—zp] 26 (L—2zp) - wjpy; (L—yj) -
k=1
factors
reordered K
= a;i-y;-(1-y;)- > 2-[zp—2p] 2 (L—2p) - ujp
k=1 J
Y
error signal o, from previous layer
\ J
Y

error signal §; from “current” layer

G. Rudolph: Computational Intelligence * Winter Term 2025/26
17

technische universitat
dortmund

Multi-Layer Perceptron (MLP)

Generalization (> 2 layers)

Let neural network have L layers S, S,, ... S,. j €Sy -

neuron j is in
Let neurons of all layers be numbered from 1 to N. m-th layer
All weights w; are gathered in weights matrix W.

Let o, be output of neuron j.
error signal:

0j - (1 —05) - (05 —Z;-‘) if j € Sy, (output neuron)

i Oj-(l—Oj)- Z 5k-wjk if j€ Spmand m< L
kesm—i—l
correction:
(t+1) (t) in case of online learning:
Wi = Wit = 0 5]' correction after each test pattern presented

G. Rudolph: Computational Intelligence = Winter Term 2025/26
18

technische universitat
dortmund

Multi-Layer Perceptron (MLP)

error signal of neuron in inner layer determined by
e error signals of all neurons of subsequent layer and

e weights of associated connections.

U

o First determine error signals of output neurons,
e use these error signals to calculate the error signals of the preceding layer,
e use these error signals to calculate the error signals of the preceding layer,

e and so forth until reaching the first inner layer.
U

thus, error is propagated backwards from output layer to first inner layer
= backpropagation (of error)

G. Rudolph: Computational Intelligence * Winter Term 2025/26

technische universitat s

dortmund

Multi-Layer Perceptron (MLP)

= other optimization algorithms deployable!
in addition to backpropagation (gradient descent) also:

e Backpropagation with Momentum
take into account also previous change of weights:

t t—1
Awi(j) = —y1:0;" 5]~ - - Awi(j)

e QuickProp
assumption: error function can be approximated locally by quadratic function,
update rule uses last two weights at stept—1 and t— 2.

¢ Resilient Propagation (RPROP)
exploits sign of partial derivatives:
2 times negative or positive — increase step size!
change of sign — reset last step and decrease step size!
typical values: factor for decreasing 0,5 / factor for increasing 1,2

e Evolutionary Algorithms
individual = weights matrix

G. Rudolph: Computational Intelligence = Winter Term 2025/26
20

technische universitat
dortmund

Application Fields of ANNs

Classification

given: set of training patterns (input / output) output = label

T T (e.g. class A, class B, ...)
T; Y
phase I:
parameters train network
A
- Y phase II:
f(x1 ('%1’@1)7"')(fm)gm)7w1"",wn> _>g apply network
— 7/ J
l v Y l to unkown
input training patterns weights output Input§ .for'
(unknown) (known) (learnt) (guessed) classification

G. Rudolph: Computational Intelligence * Winter Term 2025/26
21

technische universitat
dortmund

Application Fields of ANNs

Prediction of Time Series

time series x4, Xy, X3, ... (e.g. temperatures, exchange rates, ...)

task: given a subset of historical data, predict the future

phase I:

f(mt—knxt—k—l-la cees Tty WYy ,’U)n) - £t—l—‘l‘

~\ ./

| apply network

train network

phase II:

to historical

inputs for
training patterns: predicting
historical data where true output is known; unkown

outputs

error per pattern = (%44, — :ct_H)Q

G. Rudolph: Computational Intelligence * Winter Term 2025/26
22

technische universitat
dortmund

Application Fields of ANNs

Prediction of Time Series: Example for Creating Training Data

given: time series 10.5,3.4,5.6,2.4,5.9,8.4,3.9,4.4,1.7

time window: k=3 Y l

(10.5,3.4,56) 2.4

pa——

known known
input output

first input / output pair

further input / output pairs: (3.4, 5.6, 2.4) 5.9
(5.6, 2.4, 5.9) 8.4
(2.4, 5.9, 8.4) 3.9
(5.9, 8.4, 3.9) 4.4
(8.4, 3.9, 4.4) 1.7
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 23

Application Fields of ANNs
Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

— should give outputs close to true unkown function for arbitrary inputs

« values between training patterns are interpolated

« values outside convex hull of training patterns are extrapolated

A X @ input training pattern
X
o X ° ! input pattern where output
° X N to be interpolated
X X X
° x s : input pattern where output

to be extrapolated

G. Rudolph: Computational Intelligence = Winter Term 2025/26
24

technische universitat
dortmund

