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Plan for Today

e Introduction to Artificial Neural Networks
—  McCulloch Pitts Neuron (MCP)
—  Minsky / Papert Perceptron (MPP)

— Single Perceptron Learning
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Introduction to Artificial Neural Networks

Biological Prototype

e Neuron human being: 102 neurons
- Information gathering (D) electricity in mV range
- Information processing (C) speed: 120 m /s
- Information propagation (A/S)

cell body (C) axon (A)

/\\%
dendrite (D) synapse

nucleus
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Introduction to Artificial Neural Networks

Abstraction

T

axon
. nucleus / R
dendrites >
cell body synapse
signal signal signal
input processing output
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Introduction to Artificial Neural Networks

Model

X1\

x >
2 f(Xq, Xoy -vy Xp)
X
McCulloch-Pitts-Neuron 1943:
xe{0,1}=:B
f:B" > B
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Introduction to Artificial Neural Networks

1943: Warren McCulloch / Walter Pitts

e description of neurological networks
— modell: McCulloch-Pitts-Neuron (MCP)

e basic idea:
- neuron is either active or inactive

- skills result from connecting neurons

e considered static networks
(i.e. connections had been constructed and not learnt)
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Introduction to Artificial Neural Networks

McCulloch-Pitts-Neuron

n binary input signals x4, ..., X,
threshold 6 > 0 ( on
1 if > T; > 0
— =1
f(aj177xn)_< ’
| O else
boolean OR boolean AND
X1 X1
4 X \ X2 \
= can be realized: T . T~ .
X, / X, /
0="1 0=n
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Introduction to Artificial Neural Networks

McCulloch-Pitts-Neuron

NOT
. . . X,
n binary input signals x;, ..., X, ‘
Y1

threshold 6 > 0

in addition: m binary inhibitory signals y,, ..., y,

f(x].a"'amn;y].a"'aym> — f(mlaﬂwxn)' H (1_yj)
7=1

e if at least one y; = 1, then output =0

e otherwise:

- sum of inputs = threshold, then output = 1
else output=0
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Introduction to Artificial Neural Networks

Assumption: X,
inputs also available in inverted form, i.e. 3 inverted inputs. X,

Theorem:

Every logical function F: B — B can be simulated
with a two-layered McCulloch/Pitts net.

Example: F(x) = x120T3V T1T2T3V 174
X{ ———
X, — 123
X3 — q—\
X1
Xy =3 21—
X3
A
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Introduction to Artificial Neural Networks

Proof: (by construction)

Every boolean function F can be transformed in disjunctive normal form

= 2 layers (AND - OR)

1. Every clause gets a decoding neuron with 6 = n
= output = 1 only if clause satisfied (AND gate)

2. All outputs of decoding neurons
are inputs of a neuron with 6 = 1 (OR gate)
q.e.d.

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
10

dortmund



Introduction to Artificial Neural Networks

Generalization: inputs with weights

T fires 1 if 0,2x,+0,4x,+0,3%x,20,7 - 10
4 150,71

%2 0.3 2x,+ 4x,+ 3x32 7

/

X3 U

duplicate inputs!

X140< /

X3 —< = equivalent!
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Introduction to Artificial Neural Networks

Theorem:

Weighted and unweighted MCP-nets are equivalent for weights € Q.

Proof:

" a ag
1 .
=" et ) s > o= With a;,b; €N
n
Multiplication with H b; Yyields inequality with coefficients in N
1=0

Duplicate input x;, such that we get a, b, b, --- b, ; b;,4 --- b, inputs.

Threshold 6 =a, b, --- b,

13

”C

Set all weights to 1. g.e.d.
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Introduction to Artificial Neural Networks

Conclusion for MCP nets:

feed-forward: able to compute any Boolean function

recursive: able to simulate DFA (deterministic finite automaton)
= very similar to conventional logical circuits
— difficult to construct

= no good learning algorithm available
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Introduction to Artificial Neural Networks

Perceptron (Rosenblatt 1958)

— complex model — reduced by Minsky & Papert to what is “necessary”

— Minsky-Papert perceptron (MPP), 1969 — essential difference: x € [0,1] < R

What can a single MPP do?

Y 1
w1 x1 + woxo >0 /
N 0

Example:

0,921+ 0,8x5 > 0,6

3 9
A 5’7222—5331

technische universitat
dortmund

isolation of x, yields:

11 separating line
) Y
p separates R2
&’ .
0 . in 2 classes
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Introduction to Artificial Neural Networks

O=0 @ =1
AND OR NAND NOR
1 \ o N ®
0

v
— MPP at least as powerful as MCP neuron!

XOR X4 X, | XOr
=0 <0
1 O 0 0 0 Wy, W, 26>0
o 0 1 1 = W, 20
: + W, 2
: 1 0 1 — w, 20 = W, +w,220
0 1 1 1 0 = W, +W, <0 ¢\/
contradiction!
W, Xq + W, X, 20
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Introduction to Artificial Neural Networks Lecture 11

1969: Marvin Minsky / Seymor Papert

e book Perceptrons — analysis math. properties of perceptrons

Perceptrons

e disillusioning result:
perceptions fail to solve a number of trivial problems!

- XOR Problem
- Parity Problem

- Connectivity Problem

® “conclusion®; all artificial neurons have this kind of weakness!
— research in this field is a scientific dead end!

e consequence: research funding for ANN cut down extremely (~ 15 years)
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Introduction to Artificial Neural Networks

how to leave the “dead end “:

1. Multilayer Perceptrons:

Xz—‘l_

2. Nonlinear separating functions:

2

N

XOR

0

1

2

/

— realizes XOR

(X4, Xp) = 2X4 + 2X, —4XX, -1 with 6=0

g(0,0) = -1
g(0,1) = +1
g(1,0) = +1
g(1,1) = -1

technische universitat
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Introduction to Artificial Neural Networks

How to obtain weights w; and threshold 0 ?

as yet: by construction

example: NAND-gate

X4 X, | NAND

0 0 1 =020

0 1 1 = W,20

1 0 1 =>w,;20

1 1 0 = W, +Ww, <0

now: by ,learning” / training

technische universitat
dortmund

S

requires solution of a system of
linear inequalities (e P)

(e.g.:wy =w,=-2,0=-3)
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Introduction to Artificial Neural Networks

Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

(1) choose initial weights in arbitrary manner

(2) feed in test pattern

(3) if output of perceptron wrong, then change weights
(4)

4) goto (2) until correct output for all test patterns

A
graphically:
\ L] L] L] L]
N\ / _ — translation and rotation of separating lines
\%,
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Introduction to Artificial Neural Networks

comge 0 00 oo ((1) () (1) o

W, X4+WoX, 2 0 & W1X1+W2X2-2 0
~

1 1 1
P = 1], 1], 0 Wo o
1 —1 —1 : _
— separating hyperplane:

Hw)={x:h(x;w)=0}
1 1 1 where
N = _1 ’ _1 ’ ? h(X;W) = WX = WgXp+tW, X+ ... + WX,
= origin 0 € H(w) since h(O;w) =0
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Introduction to Artificial Neural Networks

P: set of positive examples — output 1
N: set of negative examples — output 0

threshold 6 integrated in weights

Perceptron Learning

1. choose w, at random, t=0
2. choose arbitrary x e P U N

3. ifx e Pand w/x >0 then goto 2

|
if x « N'and w/x < 0 then goto 2 /O correct!

let w'x < 0, should be > 0!
(WHX)X = WX + XX > W' X

4. if x e Pand w;x =0 then
Wi =W, + X; t++; goto 2

let wx > 0, should be < 0!
(W=X)'’X = WX —XX < WX

5. if x e Nand w;'x > 0 then
Wi = W, — X; t++; goto 2

——

6. stop? If I/O correct for all examples!

remark: if separating H(w*) exists, then
algorithm converges, is finite (but in worst case: exponential runtime)
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Introduction to Artificial Neural Networks

Example
0 0 /e
O W
O] AW —>
@~ 0 P 4

suppose initial vector of
weights is

w0 = (1, 75, 1)

> W
[1]
[1]
[1]
[1]
[1] -1.0
[1] o.0

PL(

®I—\NI—\II
®®®®U’1

L
Q.
Q.
1.
2.

technische universitat
dortmund

SPL <- function(m,w) {
print(w)
repeat {
OK <- TRUE
for (i in 1l:nrow(m)) {
X <- m[i,]
S <- X[1]*w[1]+x[2]*w[2]+x[3]*w[3]
if (s <= 0) {
OK <- FALSE
W <- W+ X
print(w) # show every change
}
}
if (OK) break;
}

return(w)

}

m <- matrix( # only positive examples
C(C( 1J1J1)JC( 1J1J_1)JC( 1:@:'1):
C(_l)l)l)JC(_lJlJ_1)JC(_1J@J_1)))
nrow=6, byrow=TRUE)
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Single-Layer Perceptron (SLP)

Acceleration of Perceptron Learning

n

Assumption: x € {0, 1}" = |Ix|| = » _|xi|=1forallx#(0, ..., 0)
=1

LetB=Pu{-x:xe N} (only positive examples)

If classification incorrect, then w'x < 0. -« 1

Consequently, size of error is just 6 =-w'x > 0.

= Wi =W, +(0+¢)x fore>0 (small) corrects error in a single step, since

WX = (W + (8 +¢)X) X
=w, X+ (0 +¢g)x'x
¢ X+ (3 +¢)
= -3+ 3 ||x[[* + & [|x|[?

=3 (IXIP=1N+elXl? >0 ™

\ J
Y \W_}
>0 >0
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Single-Layer Perceptron (SLP)

Generalization:

Assumption: x e R" = |[|x]| >0 forall x # (0, ..., 0)

as before: wy,;=w,+(3+¢)x fore>0(smalljands=-w x>0

= WX =0 (|IX[|* = 1) + & ||x]|?
N

< 0 possible! >0

Claim: Scaling of data does not alter classification task (if threshold 0)!

Let £ = min{||x]|:xeB}>0

A
Set Xx= % — set of scaled examples B
S Ix[121 = [[X[2=120 = WuX>0 &

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 24



Single-Layer Perceptron (SLP)

Theorem:
Let X=P u N with P n N = & be training patterns (P: positive; N: negative examples).
Suppose training patterns are embedded in R**! with threshold 0 and origin 0 ¢ X.

If separating hyperplane H(w) exists,
then scaling of data does not alter classification task!

Proof:
Suppose 3x e PUN with |[x|| <1 andlet £=min{||x]]:xe PUN}>0.

Setk:%xsothatIS:%:xEP}andNz{%:xeN}.

Suppose Jw with V& € P : w/% > 0 and Vx € N : w'x < 0.

Then holds:
Wx>0& wi>0& wx>0
Wi <0 & wi<0e wx<0
q.e.d.
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Single-Layer Perceptron (SLP)

There exist numerous variants of Perceptron Learning Methods.

Theorem: (Duda & Hart 1973)

If rule for correcting weights is w,,, = w, + y, X (i.e., if w, x <0) and
1. Vt20:y20

o0
2. Z V¢ = 00
t=0
m
>
lim =0 =
m

3. Am 5
( > %)
t=0

then w, — w* for t — o« with ¥x: x'w* > 0.

eg.. 7=7y>0 or vy =y/(t+1) fory>0
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Single-Layer Perceptron (SLP)

as yet: Online Learning

— Update of weights after each training pattern (if necessary)

now: Batch Learning

— Update of weights only after test of all training patterns

— Update rule:

Wi = W+ 7, X (y>0)
wix<0
XxeB

vague assessment in literature:

« advantage . ,usually faster”
 disadvantage : ,needs more memory* < just a single vector!
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Single-Layer Perceptron (SLP)

find weights by means of optimization

Let F(w) ={x € B: wx <0} be the set of patterns incorrectly classified by weight w.

Obijective function: f(w) = —2 w'x — min!
x € F(w)
Optimum: flw)=0 iff F(w) is empty

Possible approach: gradient method

converges to a local
Wi =W —vy VE(wy)  (v>0) minimum (dep. on w,)
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
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Single-Layer Perceptron (SLP)

Gradient method

negative gradient points in direction
Wi = W, — 7 V(W) of steepest descent of function f(-)

Of(w) 0f(w) 3f('w))

i VF(w) = | L
Gradient f(w) ( Jwr ' Ows S

Caution:
Indices i of w;,
here denote
components of

of (w) 0 , 0 n vector w; they are
- - wr — — E E W+ j not the iteration
ow; ow ow; J
v txeF(w) txeF(w) =1 counters!

= - 2 8,(§:wa"mj)= > T

el (w)

G. Rudolph: Computational Intelligence = Winter Term 2025/26
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Single-Layer Perceptron (SLP)

Gradient method

thus:
o0 O o /
gradient v f(w) =  2Lw) 97 (w) - O(w)
Jwy ~ Owa Own,
/
= _lea_ZxQ,...,—an
reF(w) xeF(w) € F (w)
— _Z T
z€F (w)
= Wil = W + Z X gradient method < batch learning
e F (wy)
technische universitat &. Rudolph: Computational Intelligence - Winter Term 2025/26
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Single-Layer Perceptron (SLP)

How difficult is it
(a) to find a separating hyperplane, provided it exists?

(b) to decide, that there is no separating hyperplane?

LetB=Pu{-x:xe N} (only positive examples), w, e R, 6 e R, |B|=m

For every example x; € B should hold:

Xig Wy + Xo W, + .+ X W, 20 — trivial solution w; = 6 = 0 to be excluded!

Therefore additionally: n € R

Idea: maximize n s.t. constraints — if n* > 0, then solution found

G. Rudolph: Computational Intelligence = Winter Term 2025/26
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Single-Layer Perceptron (SLP)

Matrix notation:

a:’l -1 -1 W
/

a=| T THoh a= 0
z,, —1 -1 '

Linear Programming Problem:

f(z., 2., ..., Z,, Z0\q, Z =z — max!
(21,2, v Znsts Zni2) = Znez solved by e.g. Kamarkar

st Az=0 algorithm in polynomial time

If z,., = n > 0, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist!
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