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e Introduction to Artificial Neural Networks
—  McCulloch Pitts Neuron (MCP)
— Minsky / Papert Perceptron (MPP)
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Introduction to Artificial Neural Networks

Biological Prototype

e Neuron human being: 10'2 neurons
- Information gathering (D) electricity in mV range
- Information processing (®)) speed: 120m /s

- Information propagation

cell body (C)

=

synapse (S)

nucleus dendrite (D)
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Introduction to Artificial Neural Networks

Abstraction

. nucleus /
dendrites cell body
signal signal

input processing
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Introduction to Artificial Neural Networks Introduction to Artificial Neural Networks

Model 1943: Warren McCulloch / Walter Pitts

e description of neurological networks

X
! \ — modell: McCulloch-Pitts-Neuron (MCP)
Xo f(X, gy +.vy X0 e basic idea:
- neuron is either active or inactive
- skills result from connecting neurons

Xn
McCulloch-Pitts-Neuron 1943: e considered static networks
x €{0,1}=:B (i.e. connections had been constructed and not learnt)
i ’ .
f.B" - B
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Introduction to Artificial Neural Networks Introduction to Artificial Neural Networks

McCulloch-Pitts-Neuron NOT

McCulloch-Pitts-Neuron
n binary input signals x, ..., X, n binary input signals x, ..., X, %1 e
threshold 6 > 0 n threshold 6 > 0 i y
1 if S >0 1
f(z1 Tn) = i=1 in addition: m binary inhibitory signals y;, ..., ¥,
ey =
0 else ~ m
f(xla'”)xn:yla"'aym) - f(mla"'amn)' H (1_y])
=1
boolean OR boolean AND
X . % . o if at least one y; = 1, then output = 0
= can be realized: "2 T - *2 T - e otherwise:
« 7 « 7 - sum of inputs 2 threshold, then output = 1
" n else output=0
0=1 6=n
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Introduction to Artificial Neural Networks

Assumption: X,
inputs also available in inverted form, i.e. 3 inverted inputs. X,

Theorem:

Every logical function F: B" — B can be simulated
with a two-layered McCulloch/Pitts net.

Example: F(x) = x120T3V T1Z0T3V 124
X1 _
X, ———23

\
-
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Introduction to Artificial Neural Networks

Proof: (by construction)
Every boolean function F can be transformed in disjunctive normal form

= 2 layers (AND - OR)

1. Every clause gets a decoding neuron with 6 = n
= output = 1 only if clause satisfied (AND gate)

2. All outputs of decoding neurons
are inputs of a neuron with 6 = 1 (OR gate)

q.e.d.
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Introduction to Artificial Neural Networks

Generalization: inputs with weights

? fires 1 if 0,2x,+0,4x,+0,3x%x;20,7 -10
y >0.71—
X2 0.3 ’ 2x,+ 4x,+t 3x32 7
/
X3 U
duplicate inputs!
X1 4'< /
X, —e 27 —
X3 ——e] = equivalent!
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Introduction to Artificial Neural Networks

Theorem:

Weighted and unweighted MCP-nets are equivalent for weights € Q*.

Proof: n
a; ap .
=" Lt Y. —x; > — with a;,b; €N
=10 bo
n
Multiplication with H b; yields inequality with coefficients in N
=0
Duplicate input x;, such that we get a, b, b, --- b,y b;,4 --- b, inputs.
Threshold 6 = a, by -+ b,
"C“
Set all weights to 1. g.e.d.
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Introduction to Artificial Neural Networks iéai;

Conclusion for MCP nets:

+ feed-forward: able to compute any Boolean function

+ recursive: able to simulate DFA (deterministic finite automaton)
- very similar to conventional logical circuits

- difficult to construct

- no good learning algorithm available

Introduction to Artificial Neural Networks iéai;

Perceptron (Rosenblatt 1958)

— complex model — reduced by Minsky & Papert to what is “necessary*“

— Minsky-Papert perceptron (MPP), 1969 — essential difference: x € [0,1] = R

i 2
What can a single MPP do? isolation of x, yields:

o

Y 1 p
/ w1
wy 1 +wpap >0 To > — — —x1
N~ 0 wy  wy N~ o
Example:
0,921 4+0,822>0,6 1 v separating line
3 9 separates R?2
>_Z A
S 2z gn 0 in 2 classes
0 1

G. Rudolph: Computational Intelligence = Winter Term 2025/26

technische universitat P

dortmund

G. Rudolph: Computational Intelligence = Winter Term 2025/26

technische universitat T

dortmund

Introduction to Artificial Neural Networks

o

0=0 ®=1
AND OR NAND NOR
1 \ ° \ o
0

—
— MPP at least as powerful as MCP neuron!

XOR Xy | X, | xor
] o 0 0 0 =0 <0 W,, W, 20> 0
0| 1 1 = w,;26
l?
1 0 1 — w20 = Wy +w, 226
0
0 1 1 1 0 :>w1+w2<9<\_/

contradiction!
Wy Xq + Wy X, 20
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Introduction to Artificial Neural Networks

1969: Marvin Minsky / Seymor Papert

e book Perceptrons — analysis math. properties of perceptrons

Perceptrons

o disillusioning result:
perceptions fail to solve a number of trivial problems!

- XOR Problem
- Parity Problem

- Connectivity Problem

e “conclusion®: all artificial neurons have this kind of weakness!
=> research in this field is a scientific dead end!

e consequence: research funding for ANN cut down extremely (~ 15 years)
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Introduction to Artificial Neural Networks

how to leave the “dead end ":

1. Multilayer Perceptrons:

Xy —

2
%2 1+ = realizes XOR
Xy —

2
Xy —

2. Nonlinear separating functions:

XOR g(xq, Xp) = 2%, + 2%, —4x4%, -1 with  6=0
1 o g(0,0) = -1
g(0,1) = +1
g(1,0) = +1
0 g(1,1)=-1
0 1
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Introduction to Artificial Neural Networks

How to obtain weights w; and threshold 0 ?

as yet: by construction

example: NAND-gate

X4 X, | NAND

0 0 1 =020

0 1 1 =>Ww,260 requires solution of a system of
1 0 1 —=w, 20 linear inequalities (€ P)

1 1 0 > W, +WwW, <0 (e.g. 2wy =w, =-2,6=-3)

now: by ,learning®/ training
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Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

(1) choose initial weights in arbitrary manner

(2) feed in test pattern

(3) if output of perceptron wrong, then change weights
)

(4) goto (2) until correct output for all test patterns

graphically:

— translation and rotation of separating lines
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Introduction to Artificial Neural Networks

1 1 0
(1) (2]
(-1 -1 0
=) )0 e
1 -0
threshold as a weight: w = (6, w,, w,)' X1 w20
2 W2

¢ WiXHWoX, 2 6 & w1x1+w2x2-2 0
Wo Xo
= separating hyperplane:
H(w) ={x:h(x;w)=0}
where

h(X;W) = WX = WoXgtW X+ ... + WX,

= origin 0 € H(w) since h(O;w) =0
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Introduction to Artificial Neural Networks

P: set of positive examples
N: set of negative examples
threshold 6 integrated in weights

— output 1

Perceptron Learning — output 0

1. choose w; at random, t =0
2. choose arbitrary x e PUN

3. ifx e Pand wix > 0 then goto 2
if x e N and w,'x < 0 then goto 2

4. ifx € P and w/x < 0 then }

I/O correct!

let wx = 0, should be > 0!
Wiy = W, + X; t++; goto 2 (WHx)'’x = WX +x'x > w'x

let w'x > 0, should be < 0!
(W=X)X = WX —=XxX < WX

5. if x e Nand w/'x > 0 then
Wi, 1 = W, — X; t++; goto 2

6. stop? If I/O correct for all examples!

remark: if separating H(w*) exists, then
algorithm converges, is finite (but in worst case: exponential runtime)
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Introduction to Artificial Neural Networks

Example SPL <- function(m,w) {

print(w)
repeat {
OK <- TRUE
for (i in 1:nrow(m)) {
x <- m[i,]
s <- xX[1]*w[1]+x[2]*w[2]+x[3]*w[3]
if (s <= 0) {
OK <- FALSE
W <- W+ X

oV

suppose initial vector of

weights is , print(w) # show every change
w0 = (1, %, 1)" }

if (OK) break;
> w = SPL(m,c(1,0.5,1)) }
[1] 1.0 @.5 1.0 return(w)
[1] 2.0 0.5 0.0 }
[1] 1.0 1.5 1.0
[1] .0 2.5 0.0 m <- matrix( # only positive examples
[1] -1.e 2.5 -1.0 c(c( 1,2,1),c( 21,1,-1),c( 1,0,-1),
[1] .0 2.5 -2.0 c(-1,1,1),c(-1,1,-1),c(-1,0,-1)),

nrow=6, byrow=TRUE)
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Single-Layer Perceptron (SLP)

Acceleration of Perceptron Learning

n

Assumption: x € {0, 1}" = |)x|| = > [xi|2 1forall x # (0, ..., 0)
i=1

LetB=Pu{-x:xe N} (only positive examples)

1

If classification incorrect, then w'x < 0.

Consequently, size of error is just & = -w'x > 0.

=Wy =W, + (8 +¢)x fore>0 (small) corrects error in a single step, since

WX = (Wt (8 + &) X)X
=W x+(d+¢g)xx
N
= -3+ S |IXIP + e [Ix|P?
=S (IXP=1)+elXl” >0 ™
-
20 >0
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Single-Layer Perceptron (SLP)

Generalization:

Assumption: x € R" = ||x]| >0 forall x# (O, ..., 0)'

as before: w,,=w,+(6+¢)x fore>0(small)andd=-w,x>0

= WX =38 (|IX|[2 = 1) + ¢ [Ix|]?

<0 possible! >0

Claim: Scaling of data does not alter classification task (if threshold 0)!

Let ¢ = min{||x]l:xeB}>0

A
Set x= % = set of scaled examples B
= W’M)l(\ >0 M

A
SIX)121 = [|X|E=-120
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Single-Layer Perceptron (SLP)

Theorem:
Let X =P u N with P n N = & be training patterns (P: positive; N: negative examples).
Suppose training patterns are embedded in R™*! with threshold 0 and origin 0 ¢ X.

If separating hyperplane H(w) exists,
then scaling of data does not alter classification task!

Proof:
Suppose Ix e PUN with ||x]| <1 andlet £=min{||x|]|:x e PUN}>0.

Seti:%xsothatls:{ﬁ:xeP}andN:{ﬁzxeN}.
Suppose Jw with V& € P: w/% > 0 and Vx € N : w'k < 0.

Then holds:
wWx>0 & wi>0e wx>0
Wx<0 e wi<0e wx<0

g.e.d.
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Single-Layer Perceptron (SLP)

There exist numerous variants of Perceptron Learning Methods.
Theorem: (Duda & Hart 1973)

If rule for correcting weights is w,; = w; + v, x (i.e., if w x < 0) and
1. Vt20:v20

(o]
2. Z Yt = 00
t=0
m
2
3 A N2
( > ’Yt)
t=0
then w, — w* for t — o with Vx: x'w* > 0. [

eg.. v%=vy>0 or y=y/(t+1) fory>0
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Single-Layer Perceptron (SLP)

as yet: Online Learning

— Update of weights after each training pattern (if necessary)

now: Batch Learning

— Update of weights only after test of all training patterns

— Update rule:

Weq = W+ 7 X (r>0)
wix<0
xeB

vague assessment in literature:

 advantage : ,usually faster”

+ disadvantage :,needs more memory* <+«——— just a single vector!
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Single-Layer Perceptron (SLP)

find weights by means of optimization

Let F(w) ={x e B: wx <0} be the set of patterns incorrectly classified by weight w.

Objective function: f(w) = —Z WX — min!

x € F(w)

Optimum: flw)=0 iff F(w) is empty

Possible approach: gradient method

converges to a local

Wipy = Wy —y V(W) minimum (dep. on w,)

(y>0)
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Single-Layer Perceptron (SLP)

Gradient method

negative gradient points in direction
of steepest descent of function f(-)

Wiay = Wy —y V(w,)

of (w) 9f(w) of (w)
Gradient Vf(w) = ; e
ow, Ows Own, Caution:
Indices i of w;
here denote
components of
of (w) 15} o n vector w; they are
Ow = T Ows Z w's = " ows Z Z W;Tj not the iteration
Wi Wi zeF(w) Wi z€F(w) j=1 counters!
a n
=- > aw(. wiezil == 3} m
z€F (w) t\j=1 z€F (w)
Z;
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Single-Layer Perceptron (SLP)

Gradient method
thus:
) ) o !
gradient Vf(w) = f(w)’ f(w)’ R f(w)
owyp  Owyp Own,

= —Z :El,—z LDy oo

zeF(w) zeF(w)

=Y

z€F (w)

gradient method < batch learning

= W41 zwt—l—'yz T
xeF (wy)
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Single-Layer Perceptron (SLP)

How difficult is it
(a) to find a separating hyperplane, provided it exists?

(b) to decide, that there is no separating hyperplane?

LetB=Pu{-x:xe N} (onlypositive examples), w, e R, 6 € R, |B|=m

For every example x; € B should hold:

Xig Wy + Xip Wy + ... + X, W, 26 — trivial solution w; = 8 = 0 to be excluded!

Therefore additionally: n € R
Xig Wy + X Wy + .+ X, W, —0—-m 20

Idea: maximize n s.t. constraints — if n* > 0, then solution found
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Single-Layer Perceptron (SLP)

Matrix notation:

le -1 -1 w
a=|"2 T H] 2= 0
n

x, —1 —1

Linear Programming Problem:

f(z,, 25, ..., Z,, Zp4q, Z =z — max!
@12, m Zaets Znez) = Znez solved by e.g. Kamarkar

st Az20 algorithm in polynomial time

If z,., =n > 0, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist!
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