

Computational Intelligence

Winter Term 2025/26

Prof. Dr. Günter Rudolph

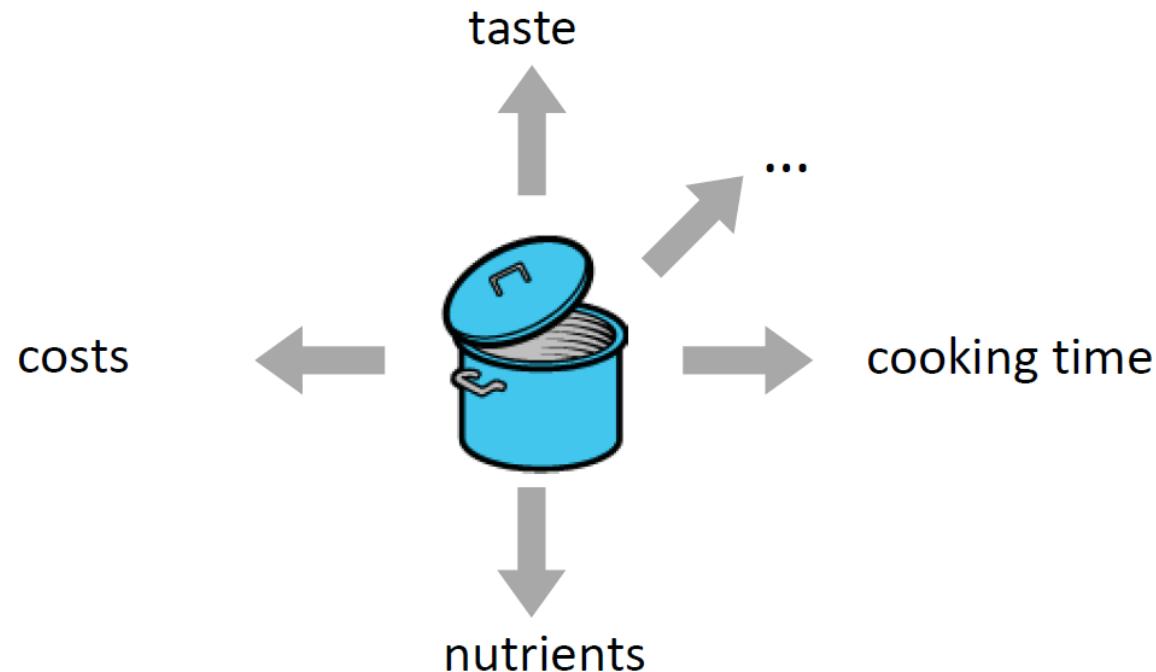
Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Multiobjective Evolutionary Algorithms
 - Examples of Multiobjective Problems
 - Theoretical Basics
 - Contemporary MOEAs

Example from daily life: Cooking



Example: buying a used car

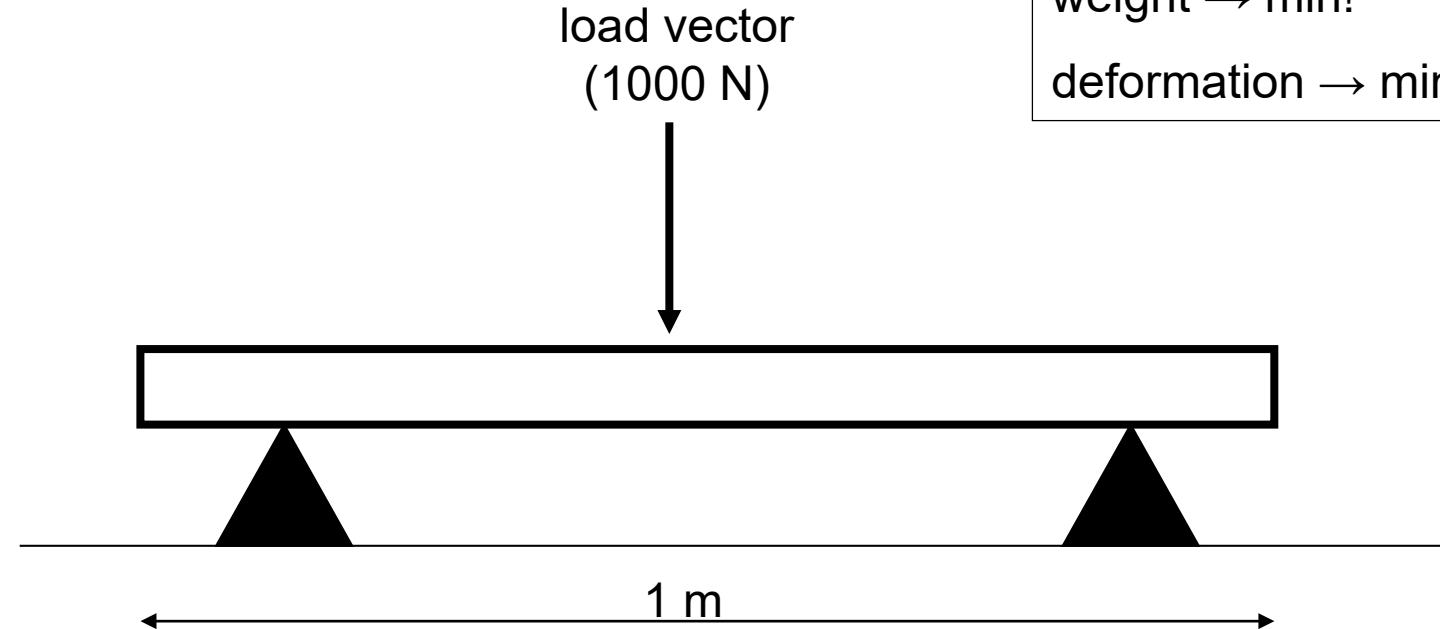
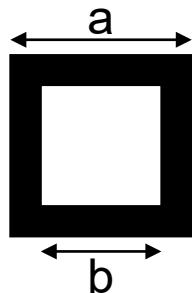
	VW	Opel	Ford	Toyota
price [k€]	16	14	15	13
fuel consumption [l/100km]	7,2	7,0	7,5	7,8
power [kW]	65	55	58	55

→ min!
→ min!
→ max!

3 objectives, 4 alternatives → best alternative?

M. Ehrgott: Multicriteria Optimization, 2nd ed., Springer: Berlin 2005. (S. 1f.)

Example: Design of a Hollow Beam



$$a^2 - b^2 \rightarrow \text{min!}$$

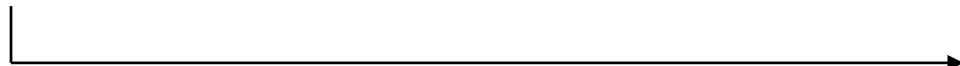
$$1000 + [32 \times 10^8 \times (a^4 - b^4)]^{-1} \rightarrow \text{min!}$$

$$0 \leq b \leq b + 0,04 \leq a \quad \text{und} \quad a \leq 0,1$$

Multiobjective Optimization:

optimization under multiple objectives, where objectives are

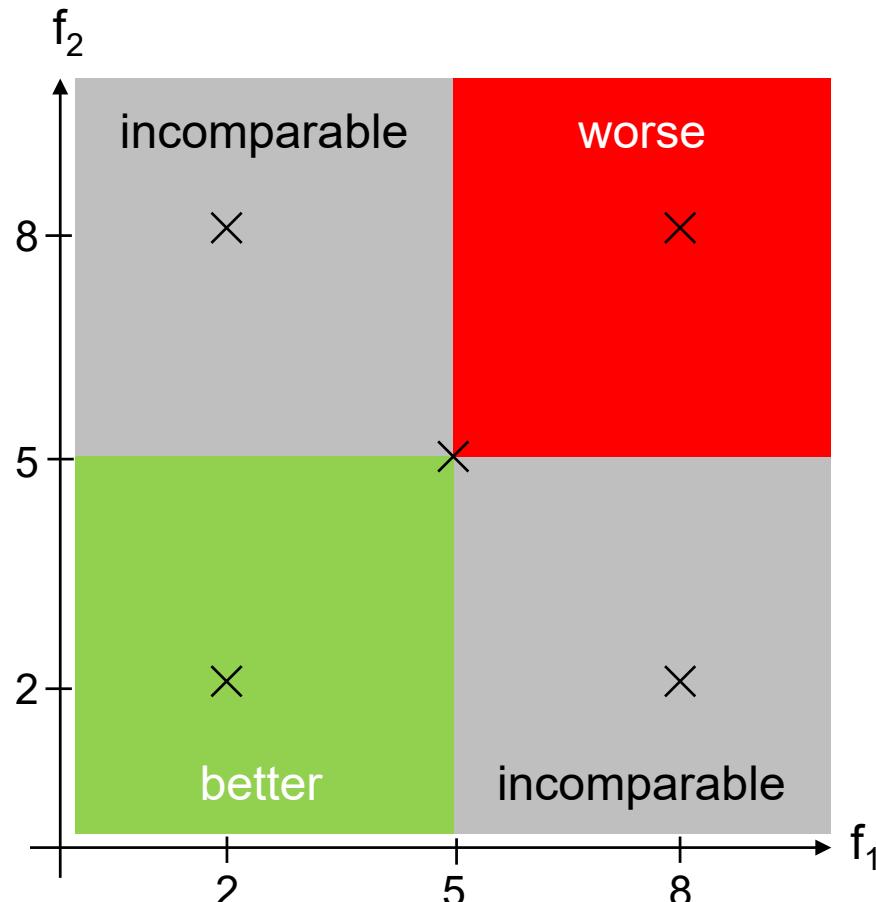
- in conflict and
- incommensurable (= incomparable w.r.t. unit)



Example:

costs	[€]
weight	[kg]
pressure resistance	[hPa]
length	[m]
...	

- concept of optimality?
- concept of solution?
- algorithmic approach?



- weak partial order

$$a \preceq b \iff \forall i \in [1..d] : a_i \leq b_i$$

- partial order

$$a \prec b \iff a \preceq b \text{ and } a \neq b$$

- a, b comparable $\iff a \preceq b$ or $b \preceq a$

- a, b incomparable $\iff a \parallel b \iff$ neither $a \preceq b$ nor $b \preceq a$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} \prec \begin{pmatrix} 5 \\ 5 \end{pmatrix} \prec \begin{pmatrix} 8 \\ 8 \end{pmatrix} \quad \text{but} \quad \begin{pmatrix} 2 \\ 8 \end{pmatrix} \parallel \begin{pmatrix} 5 \\ 5 \end{pmatrix} \parallel \begin{pmatrix} 8 \\ 2 \end{pmatrix}$$

antichain =
set of mutually
incomparable elements

Definition 1:

Let $S \subseteq \mathbb{R}^n$ and $f: S \rightarrow \mathbb{R}^d$, $d \geq 2$.

multiobjective optimization problem =

$(f_1(x), f_2(x), \dots, f_d(x))' \rightarrow \min!$

s.t. $x \in S$

■

Definition 2:

If $f(x) < f(y)$, then: x ***dominates*** y , $f(x)$ ***dominates*** $f(y)$.

solution $x^* \in S$ is termed ***Pareto-optimal*** \Leftrightarrow exists no $x \in S$ with $f(x) < f(x^*)$.

If x^* Pareto-optimal, then $f(x^*)$ ***efficient***.

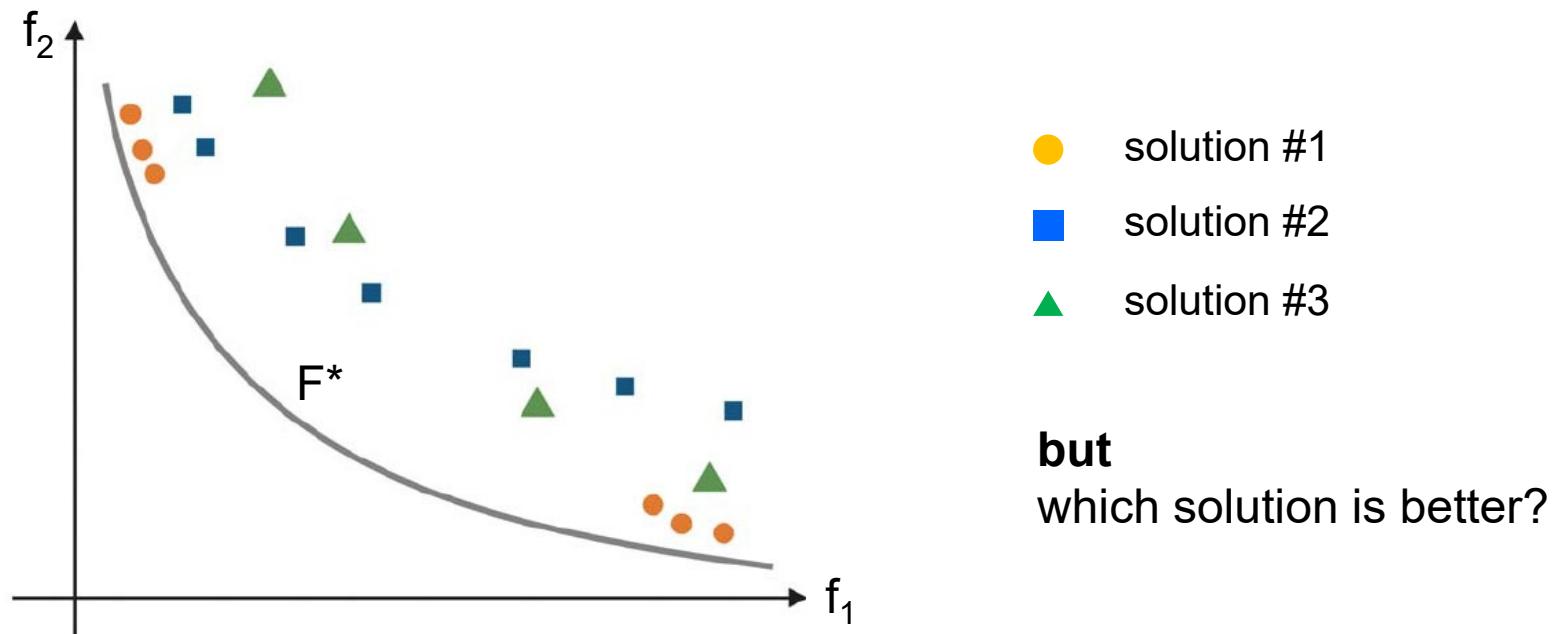
set of all Pareto-optimal elements: $S^* = \text{Pareto set}$

set of all efficient elements $F^* = \text{efficient set}$ or ***Pareto front***.

■

Remark: If $X \subseteq \mathbb{R}^n$ then size of F^* may be innumerable
and locating exact solution on F^* intractable
 \Rightarrow hopeless to find X^* or F^* completely elementwise

Remedy: Find finite approximation of F^*



Isn't there an easier way? → **Scalarization**

⇒ merge vector-valued fitness function into a scalar-valued fitness function

frequently seen: weighted sum $f^S(x; w) = \sum_{i=1}^d w_i f_i(x) \rightarrow \min!$

what happens?

$$z = w_1 f_1(x) + w_2 f_2(x) = w_1 y_1 + w_2 y_2 \rightarrow \min!$$

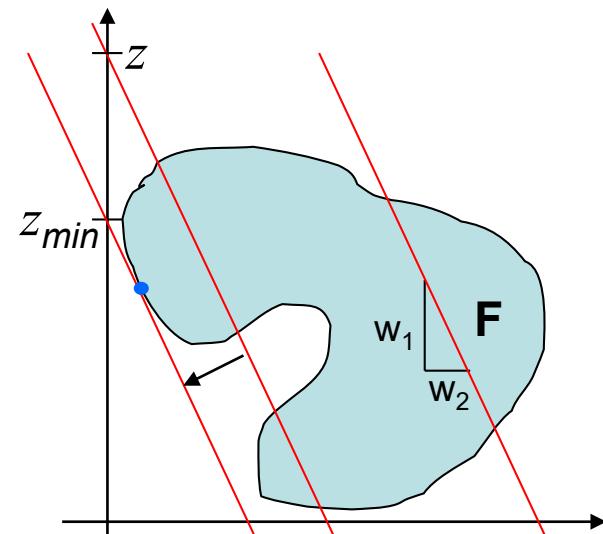
solve for y_2 :

$$y_2 = -\frac{w_1}{w_2} y_1 + z$$

is minimized while
optimizing the
scalar problem

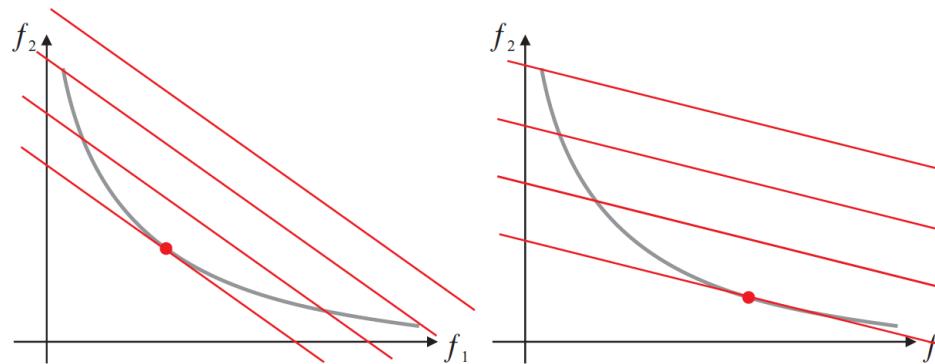
→ find straight line with minimal z ,
such that F is just touched

→ tangent point with F



good news

every optimal solution found for the scalar problem =
optimal solution for the multiobjective problem



bad news

not all optimal solution of the multiobjective problem can be found this way!



classification of methods

- ***a priori* approach**

first specify preferences, then optimize

more advanced scalarization techniques (e.g. Tschebyscheff) can find entire PF
remaining difficulty:

how to express your desires through parameter values!?

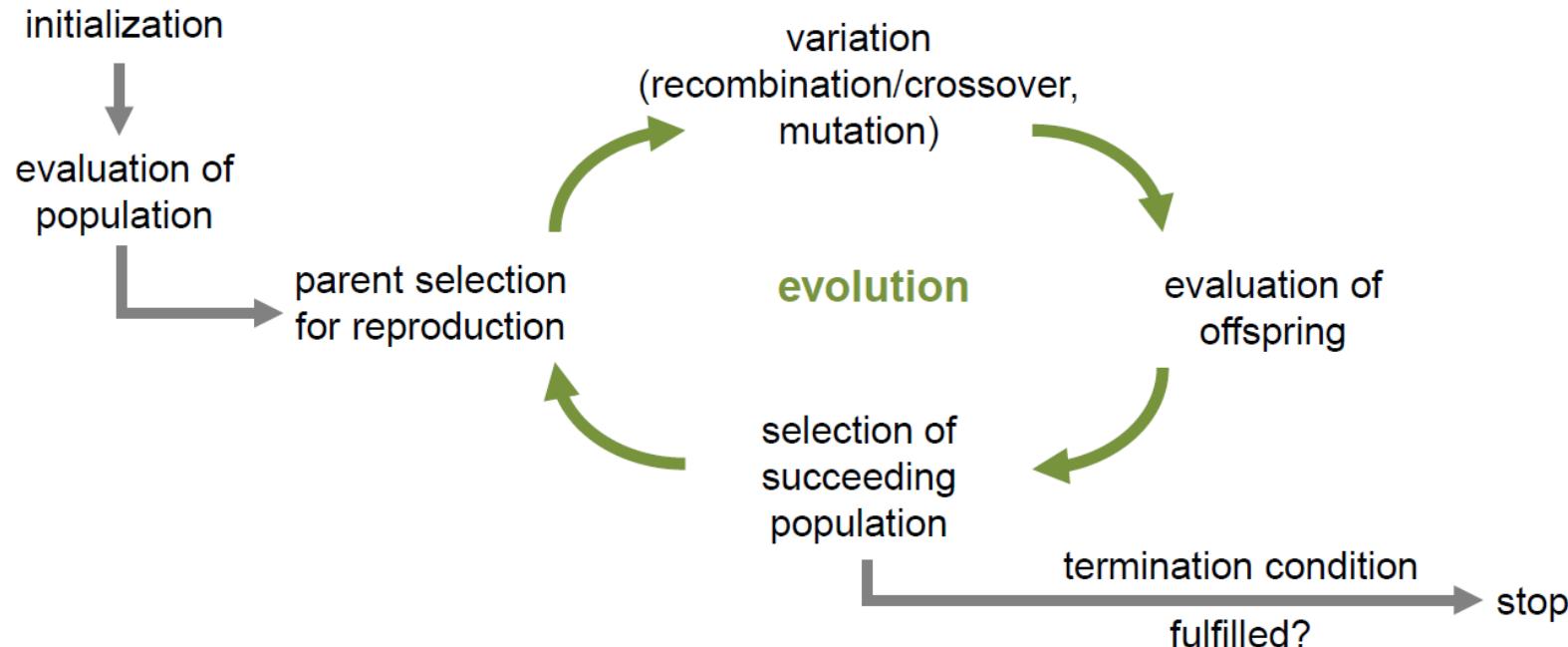
- ***a posteriori* approach**

first optimize (approximate Pareto front), then choose solution

→ back to a-posteriori approach

→ state-of-the-art methods: evolutionary algorithms

Which changes are necessary to make EA working in multiobjective case?



- ⇒ selection operation must be able to cope with **partial order of fitness values**
- ⇒ no need to alter variation operators

Selection in EMOA / MOEA

Selection requires kind of sortable population to choose “best” individuals

But: How to sort d-dimensional objective vectors?

Possible two-stage approach:

Primary selection criterion:

use Pareto dominance relation to sort *comparable* individuals

Secondary selection criterion:

apply additional measure to *incomparable* individuals to enforce total order

auxiliary device: building a **hierarchy of antichains** (aka **nondominated sorting**)

→ foundation of many selection operators!

the dual result to theorem of Dilworth (1950):

Theorem: (Mirsky 1971)

Let (F, \leq) a partially ordered set of height h . Then there exists a partition (F_1, F_2, \dots, F_h) of F consisting of antichains F_1, \dots, F_h with the property

$$\forall y \in F_{i+1} : \exists x \in F_i : x < y \text{ for } i = 1, \dots, h-1.$$

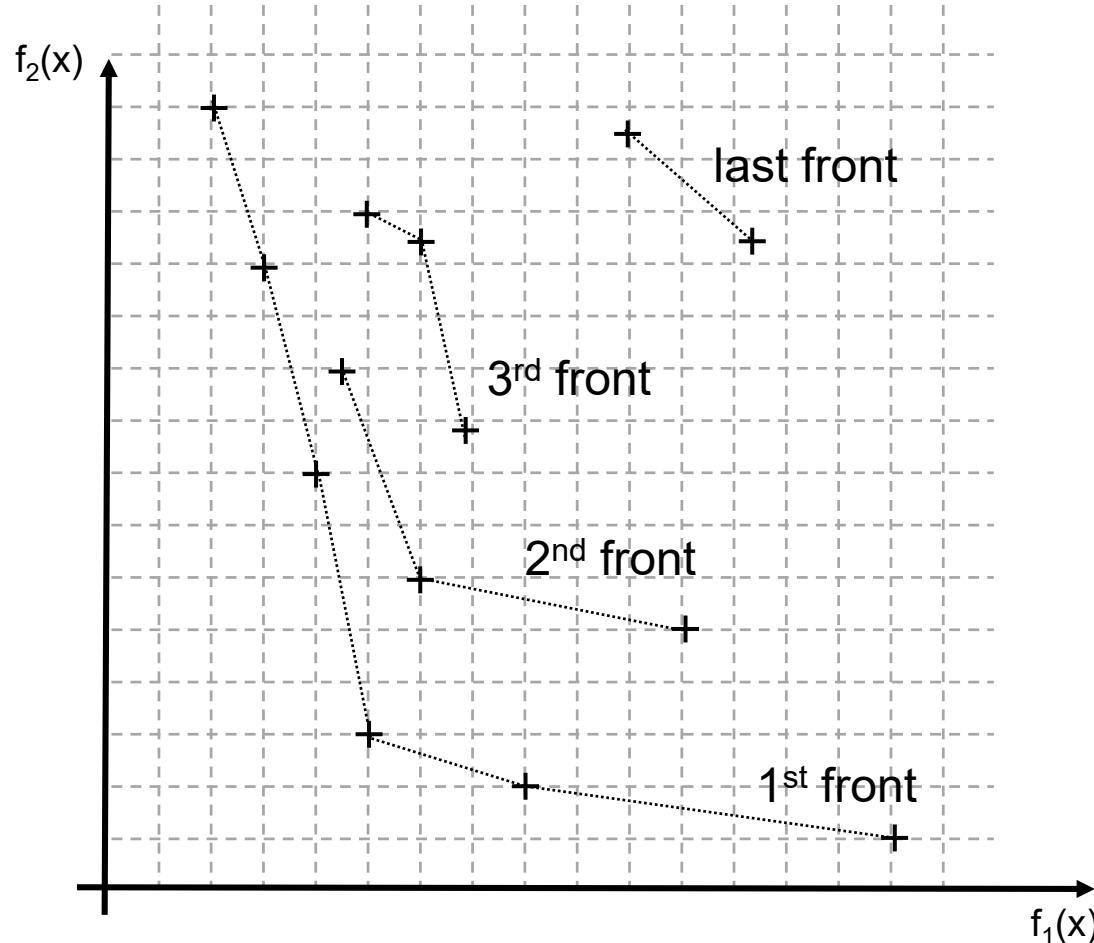
algorithmically:

let $F_1 = ND(F, \leq)$, i.e., the set of nondominated elements of F .

set $F_i = ND(F \setminus (F_1 \cup F_2 \cup \dots \cup F_{i-1}), \leq)$ for $i = 2, \dots, h$. ■

- L. Mirsky : A Dual of Dilworth's Decomposition Theorem. *The American Mathematical Monthly* 78(8):876-877, 1971.
- R. P. Dilworth: A Decomposition Theorem for Partially Ordered Sets. *Annals of Mathematics* 51(1):161-166, 1950.

example: nondominated sorting



NSGA-II

popular MOEA: **nondominated sorting genetic algorithm (version II)**

create μ parents $\in P(0)$ and μ offspring $\in Q(0)$; $t = 0$

repeat

 build hierarchy of antichains (A_1, \dots, A_h) from $A(t) = P(t) \cup Q(t)$

$P(t+1) = \emptyset$; $i = 1$

 while $\text{card}(P(t+1) \cup A_i) \leq \mu$ do

$P(t+1) = P(t+1) \cup A_i$; $i++$

 od

 if necessary do 'crowding-sort' on A_i ; fill $P(t+1)$ from sorted A_i

 generate offspring $Q(t+1)$ from $P(t+1)$

until stopping criterion applies

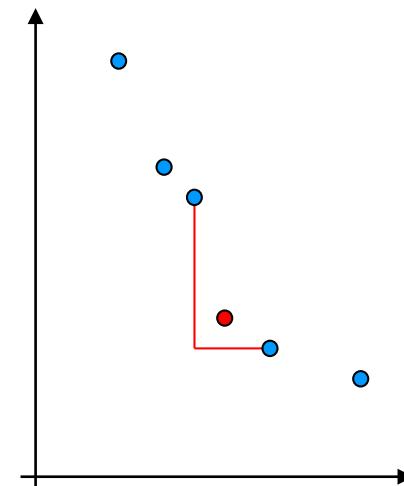
NSGA-II: crowding sort (secondary selection criterion)

crowding distance:

- half perimeter of empty bounding box around point
- value of infinity for boundary points
- large values good

crowding sort:

- sort w.r.t. crowding distance
- select those with largest value



NSGA-II: crowding selection (used for parent selection)

selection of parents used for recombination:

for each new parent: perform 'crowded tournament selection'

crowded tournament selection:

draw x and y uniformly at random from population

1. if $\text{rank}(x) < \text{rank}(y)$ then select x
2. if $\text{rank}(x) > \text{rank}(y)$ then select y
3. if $d_c(x) > d_c(y)$ then select x else y

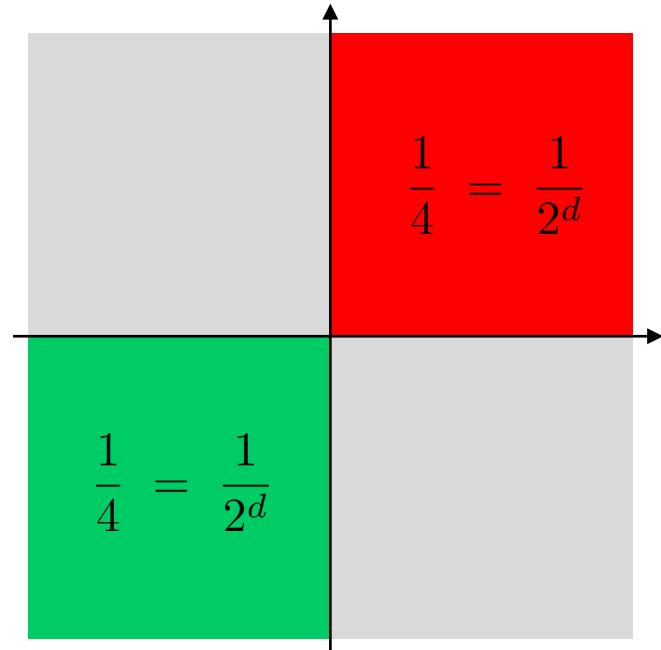
$d_c(x)$ = crowding distance

difficulties of selection

if $d = \#\text{objectives}$ large,
then most objective vectors incomparable:

share: $1 - 2 \cdot \frac{1}{2^d}$ (if uniformly distributed)

- ⇒ almost all solutions in 1st front!
- ⇒ selection in 1st stage with no effect
- ⇒ selection in 2nd stage must drive to Pareto front!



typical case: all individuals incomparable

⇒ mainly secondary selection criterion in operation

drawback of crowding distance:

rewards spreading of points, does not reward approaching the Pareto front

⇒ NSGA-II diverges for large d , difficulties already for $d = 3$

difficulties of selection

observation:

secondary selection criterion has to be meaningful!

desired: choose best subset of size μ from individuals

how to compare sets of partially incomparable points?

⇒ use quality indicators for sets

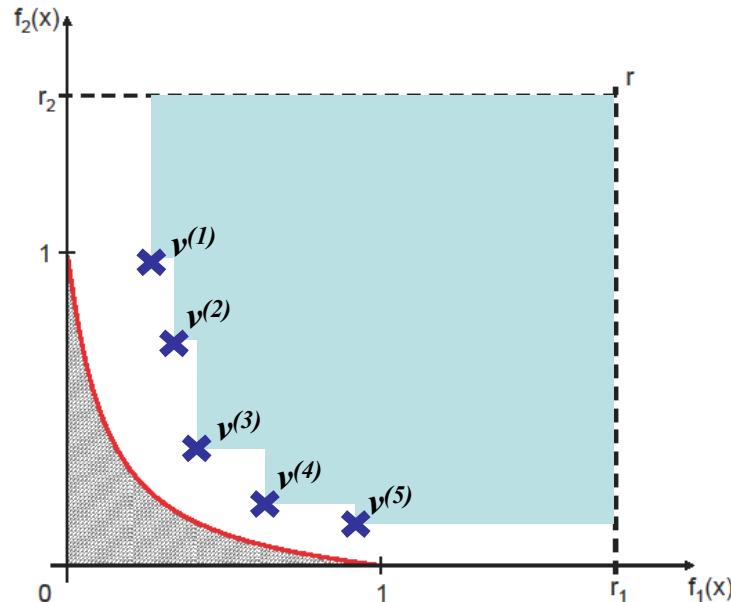
possible approach for selection:

⇒ for each point: determine contribution to quality value of set

⇒ sort points according to contribution

quality indicator: dominated hypervolume (aka S-metric)

- given antichain $v^{(1)}, v^{(2)}, \dots, v^{(\mu)} \in \mathbb{R}^2$ in lexicographic order
- given reference point $r \in \mathbb{R}^2 : v^{(i)} \prec r$ for all $i = 1, \dots, \mu$.



general case:

$$H(v^{(1)}, \dots, v^{(\mu)}; r) = \text{vol} \left(\bigcup_{i=1}^{\mu} [v^{(i)}, r] \right)$$

dominated hypervolume w.r.t. r

$$H(v^{(1)}, \dots, v^{(\mu)}; r) = [r_1 - v_1^{(1)}] \cdot [r_2 - v_2^{(1)}] + \sum_{i=2}^{\mu} [r_1 - v_1^{(i)}] \cdot [v_2^{(i-1)} - v_2^{(i)}]$$

SMS-EMOA (S-metric selection EMOA)

initialize population of μ individuals

repeat

draw two individuals uniformly at random

recombine them and mutate resulting offspring

determine antichain hierarchy A_1, \dots, A_h

replace individual from A_h with least S-metric contribution

until stopping criterion applies

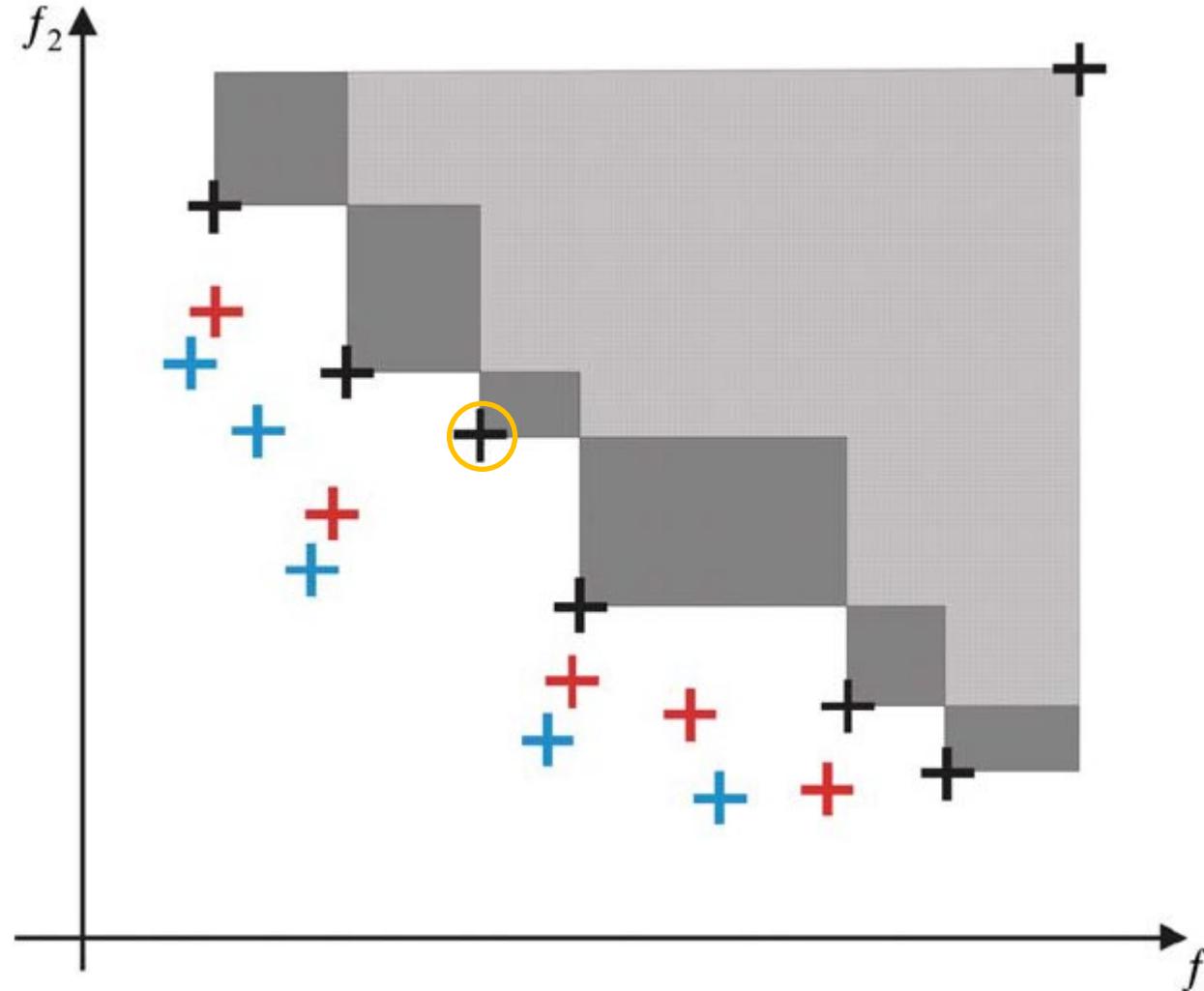
computational complexity:

S-metric must be computed μ times for μ individuals \Rightarrow naive: $O(\mu^{d+1})$

$\Rightarrow O(\mu^{d/2+1} \log \mu)$ via Overmars/Yap (Beume, März 2006)

$\Rightarrow O(\mu^{d/3} \log^k \mu)$ via Chen (2013)

example: S-metric selection in $d=2$



summary

- real-world problems are often multiobjective
- Pareto dominance only a partial order
- *a priori*: parameterization difficult
- *a posteriori*: choose solution after knowing possible compromises
- state-of-the-art *a posteriori* methods: EMOA, MOEA
- EMOA require sortable population for selection
- use quality measures as secondary selection criterion
- hypervolume: excellent quality measure, but computationally intensive
- use state-of-the-art EMOA, other may fail completely