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Plan for Today

e Multiobjective Evolutionary Algorithms
— Examples of Multiobjective Problems
— Theoretical Basics

—  Contemporary MOEAs
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Multiobjective Evolutionary Algorithms Lecture 09

Example from daily life: Cooking

taste
costs h % # cooking time
nutrients
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Multiobjective Evolutionary Algorithms

Example: buying a used car

VW Opel Ford | Toyota
price [ke€] 16 14 15 13
fuel consumption [1/100km] 7,2 7.0 7,5 7,8
power [kW] 65 55 58 95

3 objectives, 4 alternatives — best alternative?

M. Ehrgott: Multicriteria Optimization, 2nd ed., Springer: Berlin 2005. (S. 1f.)
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Multiobjective Evolutionary Algorithms

Example: Design of a Hollow Beam

weight — min!
load vector
(1000 N) deformation — min!
< 1 m >
—a

a2 — b2 — min!

1000 +[32 x 108 x (@* = b*)] ' — min!
5 O<bs<b+0,04 <a und ac=s0,1
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Multiobjective Evolutionary Algorithms

Multiobjective Optimization:

optimization under multiple objectives, where objectives are

* in conflict and

« incommensurable (= incomparable w.r.t. unit) Sl

costs [€]
, Wweight [ kg ]

pressure resistence [ hPa]
length [m]

— concept of optimality?

— concept of solution?

— algorithmic approach?
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Multiobjective Evolutionary Algorithms

f
incomparable worse
8+ X
5 4
2+ X X
incomparable
[l 1 [l > f
1 I I 1

2 S) 8

e weak partial order
a=b < Vi e [l..d]:a; <b;

e partial order

a—<b e a=<banda#b

e a,b comparable & a<borb=<a

e a,b incomparable < a||b <
neither a < b nor b < a

B-<C)<() w A1) setormay

incomparable elements
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Multiobjective Evolutionary Algorithms

Definition 1:
LetS c R"andf: S -> R4 d > 2.

multiobjective optimization problem =
(f1(x), fo(x), ..., T4(X))" — min!

st. xe S m

Definition 2:

If f(x) < f(y), then: x dominates vy, f(x) dominates f(y).

solution x* € S is termed Pareto-optimal < exists no x € S with f(x) < f(x*).
If x* Pareto-optimal, then f(x*) efficient.
set of all Pareto-optimal elements: S* = Pareto set

set of all efficient elements F* = efficient set or Pareto front. m
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Multiobjective Evolutionary Algorithms

Remark: If XC R" then size of F* may be innumerable

and locating exact solution on F* intractable

= hopeless to find X* or F* completely elementwise

Remedy: Find finite approximation of F*
f2 A

solution #1

B solution #2

A solution #3

but
which solution is better?
>
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Multiobjective Evolutionary Algorithms

Isn‘t there an easier way? — Scalarization

— merqge vector-valued fithess function into a scalar-valued fitness function

frequently seen: weighted sum Z w;

what happens?
z =wi f1(x) +wo fo(r) = wy y1 +w2yo — mMin!

solve for Y- is minimized while
Yo = _ Y1 — optimizing the
w2 scalar problem Zmin

— find straight line with minimal z,
such that F is just touched

— tangent point with F
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Multiobjective Evolutionary Algorithms

Lecture 09
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Multiobjective Evolutionary Algorithms

classification of methods

e a priori approach
first specify preferences, then optimize
more advanced scalarization techniques (e.g. Tschebyscheff) can find entire PF
remaining difficulty:
how to express your desires through parameter values!?

e a posteriori approach
first optimize (approximate Pareto front), then choose solution

— back to a-posteriori approach
— state-of-the-art methods: evolutionary algorithms
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Multiobjective Evolutionary Algorithms

Which changes are necessary to make EA working in multiobjective case?

initialization variation
l’ (recombination/crossover,
mutation)
evaluation of / -\
population
I parent selection evolution evaluation of
for reproduction offspring
selection of </
succeeding
population

termination condition
fulfilled?

stop

— selection operation must be able to cope with partial order of fithess values

= no need to alter variation operators
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Multiobjective Evolutionary Algorithms
Selection in EMOA / MOEA

Selection requires kind of sortable population to choose “best” individuals

But: How to sort d-dimensional objective vectors?

Possible two-stage approach:

Primary selection criterion:
use Pareto dominance relation to sort comparable individuals

Secondary selection criterion:
apply additional measure to incomparable individuals to enforce total order
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Multiobjective Evolutionary Algorithms

auxiliary device: building a hierarchy of antichains (aka nondominated sorting)

— foundation of many selection operators!

the dual result to theorem of Dilworth (1950):
Theorem: (Mirsky 1971)
Let (F, <) a partially ordered set of height h. Then there exists a partition
(F4, Fo, ..., F,) of F consisting of antichains F,, ..., F,, with the property
VyeF, :dxeF:x<yfori=1,...,h-1.
algorithmically:
let F, = ND(F, <), i.e., the set of nondominated elements of F.
setF,=ND(F\(F,uF,u...UF_,),x)fori=2,..., h. n

- L. Mirsky : A Dual of Dilworth's Decomposition Theorem. The American Mathematical Monthly 78(8):876-877, 1971.
- R. P. Dilworth: A Decomposition Theorem for Partially Ordered Sets. Annals of Mathematics 51(1):161-166, 1950.
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Multiobjective Evolutionary Algorithms

example: nondominated sorting

fo(x) 4

+.
-, last front

3rd front
Y

2" front
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Multiobjective Evolutionary Algorithms

NSGA-II
popular MOEA: nondominated sorting genetic algorithm (version Il)

create p parents € P(0) and p offspring € Q(0); t =0
repeat
build hierarchy of antichains (Aq,...,A4;) from A(t) = P(t) U Q(t)
Pt+1)=0,i=1
while card(P(t+ 1)U A;) < pu do
Pt+1)=Pt+1)UA; i++
od
if necessary do 'crowding-sort’ on A;; fill P(t+ 1) from sorted A;
generate offspring Q(t+ 1) from P(t+ 1)
until stopping criterion applies
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Multiobjective Evolutionary Algorithms

NSGA-II: crowding sort (secondary selection criterion)

crowding distance:

- half perimeter of empty bounding box around point
- value of infinity for boundary points

- large values good

crowding sort:
- sort w.r.t. crowding distance ®
- select those with largest value

v
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Multiobjective Evolutionary Algorithms

NSGA-II: crowding selection (used for parent selection)

selection of parents used for recombinaton:

1

for each new parent: perform ‘crowded tournament selection

crowded tournament selection:
draw x and y uniformly at random from population

1. if rank(x) < rank(y) then select x
2. if rank(x) > rank(y) then select y
3. if d.(x) > d (y) then select x else y

d.(x) = crowding distance
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Multiobjective Evolutionary Algorithms

difficulties of selection

if d = #objectives large,
then most objective vectors incomparable:

1
share: 1—-2- 5d (if uniformly distributed)

— almost all solutions in 1st front!
= selection in 1st stage with no effect
= selection in 2nd stage must drive to Pareto front!

typical case: all individuals incomparable
— mainly secondary selection criterion in operation

drawback of crowding distance:
rewards spreading of points, does not reward approaching the Pareto front
= NSGA-II diverges for large d, difficulties already for d = 3
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Multiobjective Evolutionary Algorithms

difficulties of selection

observation:
secondary selection criterion has to be meaningful!

desired: choose best subset of size u from individuals

how to compare sets of partially incomparable points?

= use quality indicators for sets

possible approach for selection:
= for each point: determine contribution to quality value of set

= sort points according to contribution
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Multiobjective Evolutionary Algorithms

quality indicator: dominated hypervolume (aka S-metric)

e given antichain v, v(® .. v(#) ¢ R? in lexicographic order
e given reference point r ¢ R?2: v() < rforalli=1,...,u.
f5(x)4

L o ———— — — — —

M

general case:

! HW, . .., oW r) = vol U[fu(i),r]

dominated hypervolume w.r.t. y
HW, .. o) = [7“1 _ vgl)} . {7“2 _ vgl)} n Z {7“1 _ UYZ)} . [,Ug;—l) B ,Ug;)}
i=2
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Multiobjective Evolutionary Algorithms
SMS-EMOA (S-metric selection EMOA)

initialize population of u individuals
repeat
draw two individuals uniformly at random
recombine them and mutate resulting offspring
determine antichain hierarchy A,, ..., A,
replace individual from A, with least S-metric contribution

until stopping criterion applies

computational complexity:

S-metrik must be computed p times for p individuals = naive: O(ud*)

= O(u¥?*1 |og p) via Overmars/Yap (Beume, Marz 2006)
= O(u93 logk n) via Chen (2013)
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Multiobjective Evolutionary Algorithms Lecture 09

example: S-metric selection in d=2

BT
>
f
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Multiobjective Evolutionary Algorithms

summary

real-world problems are often multiobjective

Pareto dominance only a partial order

a priori: parameterization difficult

a posteriori. choose solution after knowing possible compromises
state-of-the-art a posteriori methods: EMOA, MOEA

EMOA require sortable population for selection

use quality measures as secondary selection criterion

hypervolume: excellent quality measure, but computationally intensive

use state-of-the-art EMOA, other may fail completely
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