
Computational Intelligence
Winter Term 2025/26

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund



Lecture 09

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
2

Plan for Today

● Multiobjective Evolutionary Algorithms

− Examples of Multiobjective Problems

− Theoretical Basics

− Contemporary MOEAs
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Multiobjective Evolutionary Algorithms

Example from daily life: Cooking
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Multiobjective Evolutionary Algorithms

Example: buying a used car

VW Opel Ford Toyota

price [k€] 16 14 15 13

fuel consumption [l/100km] 7,2 7,0 7,5 7,8

power [kW] 65 55 58 55

→ min!

→ min!

→ max!

3 objectives, 4 alternatives → best alternative?

M. Ehrgott: Multicriteria Optimization, 2nd ed., Springer: Berlin 2005.  (S. 1f.)
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Multiobjective Evolutionary Algorithms

Example: Design of a Hollow Beam

load vector
(1000 N)

1 m

weight → min!

deformation → min!

b

a
a2 – b2 → min!

1000 + [32 x 108 x (a4 – b4)] -1 → min!

0 ≤  b ≤  b + 0,04  ≤  a    und    a ≤ 0,1
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Multiobjective Evolutionary Algorithms

→ concept of optimality?

→ concept of solution?

→ algorithmic approach?

Multiobjective Optimization:

optimization under multiple objectives, where objectives are

• in conflict and

• incommensurable (= incomparable w.r.t. unit) Example:
costs [ € ]
weight [ kg ]
pressure resistence [ hPa ]
length [ m ]
…
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Multiobjective Evolutionary Algorithms

f1

f2

incomparable

incomparable

worse

better

2 5 8

2

5

8

● weak partial order

● partial order

⇔

⇔

● comparable ⇔

● incomparable ⇔
neither nor

⇔

but
antichain =
set of mutually
incomparable elements
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Multiobjective Evolutionary Algorithms

Definition 2:

If f(x) ≺ f(y), then: x dominates y, f(x) dominates f(y).

solution x* ∈ S is termed Pareto-optimal ⇔ exists no x ∈ S with f(x) ≺ f(x*).

If x* Pareto-optimal, then f(x*) efficient.

set of all Pareto-optimal elements: S* = Pareto set

set of all efficient elements F* = efficient set or Pareto front. ■

Definition 1:

Let S ⊆ and f: S → , d ≥ 2.

multiobjective optimization problem =

(f1(x), f2(x), …, fd(x))‘ → min!

s.t.  x ∈ S ■
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Multiobjective Evolutionary Algorithms

Remark: If X          then size of F* may be innumerable

⇒ hopeless to find X* or F* completely elementwise
and locating exact solution on F* intractable

Remedy: Find finite approximation of F*

f2

f1

F*

solution #1

solution #2

solution #3

but
which solution is better?
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Multiobjective Evolutionary Algorithms

Isn‘t there an easier way? → Scalarization

⇒ merge vector-valued fitness function into a scalar-valued fitness function

frequently seen: weighted sum

what happens?

F

z

→ find straight line with minimal z, 
such that F is just touched

→ tangent point with F

zmin

w1

w2

solve for : is minimized while
optimizing the
scalar problem
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Multiobjective Evolutionary Algorithms

good news
every optimal solution found for the scalar problem = 
optimal solution for the multiobjective problem

bad news
not all optimal solution of the multiobjective problem can be found this way!
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Multiobjective Evolutionary Algorithms

classification of methods

a posteriori approach
first optimize (approximate Pareto front), then choose solution

●

a priori approach
first specify preferences, then optimize
more advanced scalarization techniques (e.g. Tschebyscheff) can find entire PF
remaining difficulty:
how to express your desires through parameter values!?

●

→ back to a-posteriori approach
→ state-of-the-art methods: evolutionary algorithms
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Multiobjective Evolutionary Algorithms

Which changes are necessary to make EA working in multiobjective case?

⇒ selection operation must be able to cope with partial order of fitness values
⇒ no need to alter variation operators
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Multiobjective Evolutionary Algorithms

Selection in EMOA / MOEA

Selection requires kind of sortable population to choose “best” individuals

But: How to sort d-dimensional objective vectors?

Primary selection criterion:
use Pareto dominance relation to sort comparable individuals

Secondary selection criterion:
apply additional measure to incomparable individuals to enforce total order

Possible two-stage approach: 
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Multiobjective Evolutionary Algorithms

auxiliary device: building a hierarchy of antichains (aka nondominated sorting)

→ foundation of many selection operators!

algorithmically:

let F1 = ND(F, ≼), i.e., the set of nondominated elements of F.

set Fi = ND(F \ (F1 ∪ F2 ∪ … ∪ Fi-1), ≼) for i = 2, …, h.                                       ■

Theorem: (Mirsky 1971)

Let (F, ≼) a partially ordered set of height h. Then there exists a partition
(F1, F2, …, Fh) of F consisting of antichains F1, …, Fh with the property

∀ y ∈ Fi+1 : ∃ x ∈ Fi : x ≺ y for i = 1, …, h – 1.

the dual result to theorem of Dilworth (1950):

- L. Mirsky : A Dual of Dilworth's Decomposition Theorem. The American Mathematical Monthly 78(8):876-877, 1971.
- R. P. Dilworth: A Decomposition Theorem for Partially Ordered Sets. Annals of Mathematics 51(1):161-166, 1950.
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Multiobjective Evolutionary Algorithms

example: nondominated sorting

f2(x)

f1(x)

1st front

2nd front

3rd front

last front
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Multiobjective Evolutionary Algorithms

NSGA-II
popular MOEA: nondominated sorting genetic algorithm (version II)
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Multiobjective Evolutionary Algorithms

crowding distance:
- half perimeter of empty bounding box around point
- value of infinity for boundary points
- large values good

NSGA-II:  crowding sort (secondary selection criterion)

crowding sort:
- sort w.r.t. crowding distance
- select those with largest value
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Multiobjective Evolutionary Algorithms

NSGA-II:  crowding selection (used for parent selection)

crowded tournament selection:
draw x and y uniformly at random from population

1. if rank(x) < rank(y) then select x

2. if rank(x) > rank(y) then select y

3. if dc(x) > dc(y) then select x else y

dc(x) = crowding distance

selection of parents used for recombinaton:

for each new parent:  perform ‘crowded tournament selection‘ 
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Multiobjective Evolutionary Algorithms

difficulties of selection

typical case: all individuals incomparable
⇒ mainly secondary selection criterion in operation

drawback of crowding distance:
rewards spreading of points, does not reward approaching the Pareto front
⇒ NSGA-II diverges for large d, difficulties already for d = 3

if d = #objectives large,
then most objective vectors incomparable:

share: (if uniformly distributed)

⇒ almost all solutions in 1st front!
⇒ selection in 1st stage with no effect
⇒ selection in 2nd stage must drive to Pareto front!
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Multiobjective Evolutionary Algorithms

observation:

secondary selection criterion has to be meaningful!

desired: choose best subset of size µ from individuals

how to compare sets of partially incomparable points?

⇒ use quality indicators for sets

possible approach for selection:

⇒ for each point: determine contribution to quality value of set

⇒ sort points according to contribution

difficulties of selection
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Multiobjective Evolutionary Algorithms

general case:

quality indicator: dominated hypervolume (aka S-metric)

● given antichain in lexicographic order
● given reference point

dominated hypervolume w.r.t. 

v(1)

v(2)

v(3)

v(4)
v(5)
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Multiobjective Evolutionary Algorithms

initialize population of µ individuals

repeat

draw two individuals uniformly at random

recombine them and mutate resulting offspring

determine antichain hierarchy A1, …, Ah

replace individual from Ah with least S-metric contribution

until stopping criterion applies

computational complexity:

S-metrik must be computed µ times for µ individuals ⇒ naive: O(µd+1)

⇒ O(µd/2+1 log µ) via Overmars/Yap (Beume, März 2006)

⇒ O(µd/3 logk µ) via Chen (2013)

SMS-EMOA (S-metric selection EMOA)
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Multiobjective Evolutionary Algorithms

example: S-metric selection in d=2
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Multiobjective Evolutionary Algorithms

• real-world problems are often multiobjective

• Pareto dominance only a partial order

• a priori: parameterization difficult

• a posteriori: choose solution after knowing possible compromises

• state-of-the-art a posteriori methods: EMOA, MOEA

• EMOA require sortable population for selection

• use quality measures as secondary selection criterion

• hypervolume: excellent quality measure, but computationally intensive

• use state-of-the-art EMOA, other may fail completely

summary
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