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Plan for Today

e Design of Evolutionary Algorithms
— Case Study: Integer Search Space
— Towards CMA-ES
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Design of Evolutionary Algorithms

ad 2) design guidelines for variation operators in practice

integer search space X = /0

a) reachability
_ - every recombination results
b) unbiasedness in some z € 7"

c) control - mutation of z may then lead
to any z* € Z" with positive
probability in one step

ad a) support of mutation should be Z"
ad b) need maximum entropy distribution over support Z"

ad c) control variability by parameter

— formulate as constraint of maximum entropy distribution
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Design of Evolutionary Algorithms

ad 2) design guidelines for variation operators in practice X=2Zn

task: find (symmetric) maximum entropy distribution over Zwith E[ | Z|]=6>0

= need analytic solution of an «o-dimensional, nonlinear optimization problem
with constraints!

o0
H(p)=—- ), pglogp, —> max!
k=—o0
s.t. pr = p— Vke Z, (symmetry w.r.t. 0)
@)
Z p, = 1, (normalization)
k=——o0
©.@)
Z k|lpr, = 6 (control “spread")
k——o0
p. > 0 VkeZ. (nonnegativity)
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Design of Evolutionary Algorithms

result:

a random variable Z with support Z and probability distribution
: q
pr = P{Z =k} = 2—_q<1—q>'k'  k€z, q€(0,1)

symmetric w.r.t. 0, unimodal, spread manageable by g and has max. entropy =

generation of pseudo random numbers: =G, -G,
where
log(1l — U;
U, ~U(0,1) = Gz:{ 9 Z>J , =1, 2.
log(1 —q)
stochastic
independent!
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Design of Evolutionary Algorithms
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Design of Evolutionary Algorithms

probability distributions for different mean step sizes E|Z| =
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Design of Evolutionary Algorithms

How to control the spread?

We must be able to adapt q € (0,1) for generating Z with variable E|Z| =0 !

self-adaptation of g in open interval (0,1) ?

— make mean step size E[|Z|] adjustable!

o0 2(1—q) 0
E[|Z]] = klpy = 0 = & g=1-
kzz_:oo l q(2—q) l (14+62)1/2 41
€ R"' S (011)
— 0 adjustable by mutative self adaptation — get q from O
— _/
YT

like mutative step size size control
of ¢ in EA with search space R"!

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 8



Design of Evolutionary Algorithms

Mutative Step Size Control
Individual (x, 0) € Z™ x R

First, mutate step size 0.,1=6,-L

Y

Second, mutate parent =X+0,,-2Z

Often: assure minimal step size = 1
8. =max{ 1,6, L}

— invented: Schwefel (1977) for real variables
— transferred: Rudolph (1994) for integer variables
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where L = exp(N) with N ~ N(0O, 1/n)

log-normal distributed
P{L>c}=P{L<1/c} forc=1
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Design of Evolutionary Algorithms Lecture 08

n - dimensional generalization

40 random vector Z = (Z,, Z,, ... Z,)
@ i
| with Z, = G, ;- G,; (stoch. indep.);

parameter q for all G,;,, G,; equal

L
0

PR et By
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Design of Evolutionary Algorithms

n - dimensional generalization P{Z; =k} = %q (1 — g)l¥!

n
P{Z1 =k1,Z0 =kp,...,Zn=kn} = || P{Z;=k;} =
i=1

(%q) Ma-okl = (%q) (1 Si ki

1=1
<ng> (1 o)kl |

— n-dimensional distribution is symmetric w.r.t. £, norm!

= all random vectors with same step length have same probability!
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Design of Evolutionary Algorithms

How to control E[ || Z||,]?

i n ] n
ElZl1] = E | |Zil| = ) EllZ]l = n-E[|Z1]]
=1 | [ i=1 [
by def. linearity of E[] identical distributions for Z,
2(1 — 0/n
nBlz)] = n 2070 o g=1- L
4 ; (2 q) \<1+<6/n>> +1
~
\ self-adaptation calculate from 0
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Design of Evolutionary Algorithms

Algorithm:
individual

mutation

recombination

selection
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: (x,0) EZRXR+

00t = 9(®) . exp(N), N ~ N(0,1/n).

if 9(+1) <1 then 6,4, =1
calculate new q for G; from 60,44

vi=1,..n: Xt = x4 (G- Gay)

. discrete (uniform crossover)

. (u, A)-selection

(Rudolph, PPSN 1994)
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Design of Evolutionary Algorithms

Example: (1, A)-EA withA=10; f(x)=xXx—->min!; n=10

X0 e [100, 101" NZ™ X© e [10000,10100]™ N Z"
6, = 50 000 6,=5
initial step size 6, too large initial step size 6, too small
1x10° 3 T T T T T E 1x1010 T | T T T
e LR - - ] 1x10°% ¢ T\ ()
1x106 [ b | . | | ; | \ :
E I'.k 3 1x10 3 \ =
100000 | - “‘“ﬂ""%-v"“w‘ P, 3 : Mo 5
10000 ' 2
: - e E 10000 | l | .
1000 & Wiy E i P as AN ;
F T “"-\_.._ b"'u 3 T - W\"\'.__ \] .
100 %_ 0 \":M—“'\""-c-_,l_.lv J I'rp _% 100 L vz = | ) wl. N 'M‘“k ,
10 ;— o $W:$ 1 _; i)‘”wrw ww{ﬁm"‘x‘_s{?‘_ﬁ*f} -\ ;
L | | ! ! &"tfﬁM ha N | 1 | | ! ! ! %ﬂ‘r
0 100 200 300 400 500 600 0 100 200 300 400 500 600
generations generations
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Design of Evolutionary Algorithms

Alternative mutation distribution with unbounded support
discrete distribution with heavy tails =
probability distribution whose tails decay polynomially

here: Power-law mutations

Let 3> 1 and ((B) = Y i~” be the Riemann zeta function.

=1
A discrete random variable Z with p.m.f.

11
2¢(8) [kl

for k € Z \ {0} is said to be (bilateral) power law distributed.

P{Z=k)=

here: [ = % = ((B) = 2.61237534868548834334856756 . . .
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Design of Evolutionary Algorithms

bilateral power law distribution
with heavy tails

0.15
|

=k)
010

P(Z

—40 -20 0 20 40

S84 o |||||II||||||||H‘ .
I
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vector-valued distribution:

for each dimensioni=1, .., n
draw Z; with probability 1/n

otherwise setto 0
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Excursion: Maximum Entropy Distributions

ad 2) design guidelines for variation operators in practice

continuous search space X = Rn

a) reachability — mutation distribution with unbounded support
b) unbiasedness — mutation distribution with maximum entropy
c) control — mutation distribution with parameters

— leads to CMA-ES !

|

Covariance
Matrix
Adaptation
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Towards CMA-ES

mutation: Y=X+Z Z ~ N(0, C) multinormal distribution

|

maximum entropy distribution for
support R", given expectation
vector and covariance matrix

how should we choose covariance matrix C?

unless we have not learned something about the problem during search
= don't prefer any direction!

— covariance matrix C = I, (unit matrix)

C=1, C =diag(sy,.--,Sp) C orthogonal
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Towards CMA-ES

claim: mutations should be aligned to isolines of problem (Schwefel 1981)

if true then covariance matrix should
be inverse of Hessian matrix!

= assume f(x) » 2 X’Ax + b'x + C = H=A
Z ~ N(0, C) with density

— 1 _l r~—1
fz(x) = B TEGEE exp( 2:1:0 x)

since then many proposals how to adapt the covariance matrix

= extreme case: use n+1 pairs (X, f(x)),

apply multiple linear regression to obtain estimators for A, b, c

invert estimated matrix A!  OK, but: O(n®)! (Rudolph 1992)
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Towards CMA-ES

doubts: are equi-aligned isolines really optimal?

principal axis

v

should point into
negative gradient
direction!

(proof next slide)

most (effective) algorithms behave like this:

run roughly into negative gradient direction,
sooner or later we approach longest main principal axis of Hessian,

now negative gradient direction coincidences with direction to optimum,
which is parallel to longest main principal axis of Hessian,
which is parallel to the longest main principal axis of the inverse covariance matrix

(Schwefel OK in this situation)
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Towards CMA-ES

Z=rQu,A=B'B,B=Q"

f(z + 1Qu)

if | Qu

% (x +rQu)'A(xz+rQu) + b (z+ rQu) +c
% (' Ax + 2r2’ AQu + v/ Q' AQu) + vz + rb/Qu + ¢
= f(x) +rz’ AQu + rb/Qu + %TQU/Q/AQZL
f(x) +r(Az + b+ 5AQu) ' Qu
f(@) +r(Vf(z) + 5AQ0u)'Qu
2

f(@) +r V@) Qu+ 5 W' Q AQu
f(@) +r Vi) QuH+ s min!

were deterministic ...

= set Qu = -Vf(x) (direction of steepest descent)
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Towards CMA-ES

Apart from (inefficient) regression, how can we get matrix elements of Q?

= iteratively: Ck+1) = update( C*), Population®) )

basic constraint: C& must be positive definite (p.d.) and symmetric for all k = 0,

otherwise Cholesky decomposition impossible: C = Q'Q

Lemma
Let A and B be quadratic matrices and o, > 0.
a) A, B symmetric = a A+ 3 B symmetric.

b) A positive definite and B positive semidefinite = o A + 3 B positive definite

Proof:
ad a) C =a A+ Bsymmetric, sincec;=aa;+Bb;=ag;+pBb;=c
ad b) Vx € R"\ {0}: x(cA+BB)x=axAx+pBxBx >0
0 20
> 2
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Towards CMA-ES

Theorem
A quadratic matrix C) is symmetric and positive definite for all k = 0,
if it is built via the iterative formula C**1) =g, CK + B, v, V*,

where CO =1 v, #0, o, > 0 and liminf g, > 0.

Proof:

If v # 0, then matrix V = vv' is symmetric and positive semidefinite, since

* as per definition of the dyadic product v;=v;-v,=v;-v;=v;foralli, jand
« forall x e R": x* (vw') x = (x'v) - (v'x) = (x'v)? =2 0.

Thus, the sequence of matrices v, v, is symmetric and p.s.d. for k = 0.

Owing to the previous lemma matrix Ck*') is symmetric and p.d., if
Ck is symmetric as well as p.d. and matrix v,v', is symmetric and p.s.d.

Since C© = symmetric and p.d. it follows that C(Y) is symmetric and p.d.
Repetition of these arguments leads to the statement of the theorem.
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CMA-ES

Idea: Don't estimate matrix C in each iteration! Instead, approximate iteratively!

(Hansen, Ostermeier et al. 1996ff.)

— Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)

Set initial covariance matrix to C®O =1_

o n : “learning rate” € (0,1)
Ct#D = (1-m) CO + n Y w; (X, — M) (x;;, — mO)

w; . weights; mostly 1/u
1=1

1 M
m= - Z Lj:\ mean of all selected parents complexity:
Hi=1 O(un2+ nd)

sorting: f(x4.,) < f(X5,) = ... =f(X,.,)

Caution: must use mean m® of “old“ selected parents; not ,new* mean mt"!
— Seeking covariance matrix of fictitious distribution pointing in gradient direction!
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CMA-ES

State-of-the-art: CMA-EA (currently many variants)

C, C++, Java
Fortran, Python,
Matlab, R, Scilab

— many successful applications in practice

available in WWW: /
* http://cma.gforge.inria.fr/cmaes sourcecode page.html

* http://image.diku.dk/shark/ (EAlib, C++)

advice:

before designing your own new method
or grabbing another method with some fancy name ...
try CMA-ES - it is available in most software libraries and often does the job!
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