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Plan for Today

● Design of Evolutionary Algorithms

− Design Guidelines

− Genotype-Phenotype Mapping

− Maximum Entropy Distributions
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Design of Evolutionary Algorithms

Three tasks:

1. Choice of an appropriate problem representation.

2. Choice / design of variation operators acting in problem representation.

3. Choice of strategy parameters (includes initialization).

ad 1) different “schools“:

(a) operate on binary representation and define genotype/phenotype mapping
+ can use standard algorithm
– mapping may induce unintentional bias in search

(b) no doctrine: use “most natural” representation 
– must design variation operators for specific representation
+ if design done properly then no bias in search 
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Design of Evolutionary Algorithms

ad 1a) genotype-phenotype mapping

original problem f: X → Rd

scenario: no standard algorithm for search space X available

Bn

X Rdf

g

• standard EA performs variation on binary strings b ∈ Bn

• fitness evaluation of individual b via (f ◦ g)(b) = f(g(b)) 

where g: Bn → X is genotype-phenotype mapping

• selection operation independent from representation
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Design of Evolutionary Algorithms

Genotype-Phenotype-Mapping  Bn → [L, R] ⊂ R

● Standard encoding for b ∈ Bn

→ Problem: hamming cliffs

000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7

L = 0, R = 7

n = 3
1 Bit 2 Bit 1 Bit 3 Bit 1 Bit 2 Bit 1 Bit

Hamming cliff

genotype

phenotype
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Design of Evolutionary Algorithms

● Gray encoding for b ∈ Bn

000 001 011 010 110 111 101 100

0 1 2 3 4 5 6 7

Let a ∈ Bn standard encoded.  Then bi = 
ai, if i = 1

ai-1⊕ ai, if i > 1
⊕ = XOR

genotype

phenotype

OK, no hamming cliffs any longer …

⇒ small changes in phenotype „lead to“ small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

⇒ small changes in genotype lead to small changes in phenotype!

but: 1-Bit-change:  000 → 100 ⇒ 

Genotype-Phenotype-Mapping  Bn → [L, R] ⊂ R
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Design of Evolutionary Algorithms

● e.g. standard encoding for b ∈ Bn

010 101 111 000 110 001 101 100

0 1 2 3 4 5 6 7

genotype

index

Genotype-Phenotype-Mapping  Bn → Plog(n)

individual:

consider index and associated genotype entry as unit / record / struct;

sort units with respect to genotype value, old indices yield permutation:

000 001 010 100 101 101 110 111

3 5 0 7 1 6 4 2

genotype

old index

(example only)

= permutation
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Design of Evolutionary Algorithms

ad 1a) genotype-phenotype mapping

typically required: strong causality

→ small changes in individual leads to small changes in fitness

→ small changes in genotype should lead to small changes in phenotype

but: how to find a genotype-phenotype mapping with that property?

necessary conditions: 

1) g: Bn → X can be computed efficiently (otherwise it is senseless)

2) g: Bn → X is surjective (otherwise we might miss the optimal solution)

3) g: Bn → X preserves closeness (otherwise strong causality endangered)

Let d(· , ·) be a metric on Bn and dX(· , ·) be a metric on X.

∀x, y, z ∈ Bn : d(x, y) ≤ d(x, z)  ⇒ dX(g(x), g(y)) ≤ dX(g(x), g(z)) 
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Design of Evolutionary Algorithms

ad 1b) use “most natural“ representation

but: how to find variation operators with that property?

typically required: strong causality

→ small changes in individual leads to small changes in fitness

→ need variation operators that obey that requirement

⇒ need design guidelines ...
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Design of Evolutionary Algorithms

ad 2) design guidelines for variation operators

a) reachability
every x ∈ X should be reachable from arbitrary x0 ∈ X
after finite number of repeated variations with positive probability bounded from 0

b) unbiasedness
unless having gathered knowledge about problem
variation operator should not favor particular subsets of solutions
⇒ formally: maximum entropy principle

c) control
variation operator should have parameters affecting shape of distributions;
known from theory: weaken variation strength when approaching optimum
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Design of Evolutionary Algorithms

ad 2) design guidelines for variation operators in practice

binary search space X = Bn

variation by k-point or uniform crossover and subsequent mutation

a) reachability:
regardless of the output of crossover
we can move from x ∈ Bn to y ∈ Bn in 1 step with probability

where H(x,y) is Hamming distance between x and y.

Since min{ p(x,y): x,y ∈ Bn } = δ > 0 we are done.
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Design of Evolutionary Algorithms

b) unbiasedness

don‘t prefer any direction or subset of points without reason

⇒ use maximum entropy distribution for sampling!

properties:

- distributes probability mass as uniform as possible

- additional knowledge can be included as constraints:
→ under given constraints sample as uniform as possible
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Design of Evolutionary Algorithms

Definition:

Let X be discrete random variable (r.v.) with pk = P{ X = xk } for some index set K.
The quantity

is called the entropy of the distribution of X. If X is a continuous r.v. with p.d.f. 
fX(·) then the entropy is given by

The distribution of a random variable X for which H(X) is maximal is termed a 
maximum entropy distribution. ■

Formally:
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Excursion: Maximum Entropy Distributions

s.t.

⇒ leads to nonlinear constrained optimization problem:

solution: via Lagrange (find stationary point of Lagrangian function)

Knowledge available:

Discrete distribution with support { x1, x2, … xn } with x1 < x2 < … xn <  
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Excursion: Maximum Entropy Distributions

partial derivatives:

⇒

⇒

uniform 
distribution
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with support { 1, 2, …, n } with pk = P { X = k }   and E[ X ] = ν

s.t.

⇒ leads to nonlinear constrained optimization problem:

and 

solution: via Lagrange (find stationary point of Lagrangian function)
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Excursion: Maximum Entropy Distributions

partial derivatives:

⇒

(continued on next slide)

*(    )
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Excursion: Maximum Entropy Distributions

⇒ ⇒

⇒ discrete Boltzmann distribution

⇒ value of q depends on ν via third condition: *(    )
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Excursion: Maximum Entropy Distributions

Boltzmann distribution

(n = 9)

ν = 2

ν = 3

ν = 4

ν = 8

ν = 7

ν = 6ν = 5

specializes to uniform 
distribution if ν = 5 

(as expected)
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with support { 1, 2, …, n } with E[ X ] = ν and V[ X ] = η2

s.t.

⇒ leads to nonlinear constrained optimization problem:

and and 

solution: in principle, via Lagrange (find stationary point of Lagrangian function)

but very complicated analytically, if possible at all

⇒ consider special cases only
note: constraints 

are linear 
equations in pk
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Excursion: Maximum Entropy Distributions

Special case:  n = 3 and E[ X ] = 2  and V[ X ] = η2

Linear constraints uniquely determine distribution:

I.

II.

III.

II – I:

I – III:

insertion in III.

unimodal uniform bimodal
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, … } and  E[ X ] = ν

s.t.

⇒ leads to infinite-dimensional nonlinear constrained optimization problem:

and 

solution: via Lagrange (find stationary point of Lagrangian function)
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Excursion: Maximum Entropy Distributions

⇒

(continued on next slide)

partial derivatives:

*(    )
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Excursion: Maximum Entropy Distributions

⇒ ⇒

set and insists that ⇒
insert

⇒ geometrical distributionfor

it remains to specify q;   to proceed recall that
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Excursion: Maximum Entropy Distributions

⇒ value of q depends on ν via third condition: *(    )

⇒

⇒
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Excursion: Maximum Entropy Distributions

geometrical distribution

with E[ x ] = ν

pk only shown 
for k = 0, 1, …, 8

ν = 1

ν = 2

ν = 3 ν = 4 ν = 5

ν = 6

ν = 7
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Excursion: Maximum Entropy Distributions

Overview:

support { 1, 2, …, n } ⇒ discrete uniform distribution

and require E[X] = θ ⇒ Boltzmann distribution

and require V[X] = η2 ⇒ N.N. (not Binomial distribution)

support N ⇒ not defined!

and require E[X] = θ ⇒ geometrical distribution

and require V[X] = η2 ⇒ ?

support Z ⇒ not defined!

and require E[|X|] = θ ⇒ bi-geometrical distribution (discrete Laplace distr.)

and require E[|X|2] = η2 ⇒ N.N. (discrete Gaussian distr.)
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Excursion: Maximum Entropy Distributions

support [a,b] ⊂ R ⇒ uniform distribution

support R+  with E[X] = θ ⇒ Exponential distribution

support R
with E[X] = θ, V[X] = η2 ⇒ normal / Gaussian distribution N(θ, η2)

support Rn

with E[X] = θ
and Cov[X] = C ⇒ multinormal distribution N(θ, C)

expectation vector ∈ Rn covariance matrix ∈ Rn,n

positive definite: 
∀x ≠ 0 : x‘Cx > 0
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Excursion: Maximum Entropy Distributions

for permutation distributions ?

Guideline:

Only if you know something about the problem a priori or

if you have learnt something about the problem during the search

⇒ include that knowledge in search / mutation distribution (via constraints!)

→ uniform distribution on all possible permutations

set v[j] = j for j = 1, 2, ..., n

for i = n to 1 step -1

draw k uniformly at random from { 1, 2, ..., i }

swap v[i] and v[k]

endfor 

generates 
permutation 
uniformly at 
random in 
Θ(n) time
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