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Plan for Today Lecture 06

e Evolutionary Algorithms (EA)
e Optimization Basics
e EABasics
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Optimization Basics
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simulation =) ! )
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optimization - ! -
input system output
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Optimization Basics

given:
objective functionf: X - R

feasible region X (= nonempty set)

objective: find solution with minimal or maximal value!

optimization problem: x* global solution
find x* € X such that f(x*) = min{ f(x) : x € X } f(x") global optimum
note:

max{ f(x) : x e X} =—min{ —f(x) : x € X}
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Optimization Basics

local solution x* € X : if x* local solution then
vx e N(x*): f(x*) < f(x) f(x*) local optimum / minimum
neighborhood of x™ = example: X=R" N(x*)={xe X ||[x=Xx*|,<e} (¢>0)

bounded subset of X

remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general! 4

example:

f: [a,b] — R, global solution at x*
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Optimization Basics

What makes optimization difficult?

SOme Causes.

* local optima (is it a global optimum or not?)

— e« constraints (e.qg. ill-shaped feasible region)
 non-smoothness / ruggedness (weak causality) ——— strong causality needed!
» discontinuities (= nondifferentiability, no gradients)

* lack of knowledge about problem (= black / gray box optimization)

— f(x)=a, x; +...+a,x, — max! with x, € {0,1}, a, eR = x*=1iffa,>0
add constaint g(x)=b,;x,+...+b,x,<b = NP-hard
add capacity constraint to TSP = CVRP = even harder
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26

dortmund 6



Optimization Basics

When using which optimization method?

mathematical algorithms randomized search heuristics

* problem explicitly specified * problem given by black / gray box

* problem-specific solver available * No problem-specific solver available

* problem well understood * problem poorly understood

* ressources for designing * insufficient ressources for designing
algorithm affordable algorithm

» solution with proven quality « solution with satisfactory quality
required sufficient

= don‘t apply EAs = EAs
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Evolutionary Algorithm Basics

idea: using biological evolution as metaphor and as pool of inspiration

= interpretation of biological evolution as iterative method of improvement

feasible solution x ¢ X=5, x ... x S, = chromosome of individual
multiset of feasible solutions = population: multiset of individuals
objective function f: X —» R = fitness function

often: X =R", X =B"={0,1}", X=P_ ={ = : nis permutation of {1,2,...,n} }

also : combinations like X =IR" xBP xIPq or non-cartesian sets

= structure of feasible region / search space defines representation of individual
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Evolutionary Algorithm Basics

algorithmic initialize population
skeleton !
evaluation

|

— parent selection

v
variation (yields offspring)

|

evaluation (of offspring)

!

survival selection (yields new population)

!

—— stop?
by

output: best individual found
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Evolutionary Algorithm Basics

Specific example: (1+1)-EA inB" for minimizing some f:B" — R

population size = 1, number of offspring = 1, selects best from 1+1 individuals

tt

parent offspring

1. initialize X©® eB" uniformly at random, sett=0

evaluate f(XO)

select parent: Y = X » no choice, here

variation: flip each bit of Y independently with probability p, = 1/n
evaluate f(Y)
selection: if f(Y) < f(X®) then X1 =Y else Xt*1) = X1

N o o bk~ 0D

if not stopping then t = t+1, continue at (3)
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Evolutionary Algorithm Basics

Specific example: (1+1)-EA inR" for minimizing some f:R" — R

population size = 1, number of offspring = 1, selects best from 1+1 individuals

t 1

parent offspring

compact set = closed & bounded

/

initialize X(® e C < R" uniformly at random, sett=0
evaluate f(X®)

select parent: Y = X »  no choice, here

variation = add random vector: Y=Y +Z, e.g. Z~N(0, I)
evaluate f(Y)
selection: if f(Y) < f(X®) then X1 =Y else Xt*1) = XO

N o o k~ w Db =

if not stopping then t = t+1, continue at (3)
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Evolutionary Algorithm Basics

Selection

(a) select parents that generate offspring — selection for reproduction

(b) select individuals that proceed to next generation — selection for survival

necessary requirements:
- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)

- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals’ chromosomes x (— maintain diversity)
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Evolutionary Algorithm Basics

Selection methods

population P = (x4, X5, ..., xu) with p individuals

two approaches:

1. repeatedly select individuals from population with replacement

2. rank individuals somehow and choose those with best ranks (no replacement)

* uniform / neutral selection
choose index i with probability 1/u

» fitness-proportional selection f(z;)
choose index i with probability s; =
P V37T f(@)
zeP
problems: f(x) > O for all x € X required = g(x) =exp(f(x))>0

but already sensitive to additive shifts g(x) = f(x) + ¢

almost deterministic if large differences, almost uniform if small differences
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Evolutionary Algorithm Basics

Selection methods

population P = (x4, X,, ..., xM) with p individuals

* rank-proportional selection
order individuals according to their fithess values
assign ranks o‘,[d
fitness-proportional selection based on ranks a’ed,

= avoids all problems of fitness-proportional selection
but: best individual has only small selection advantage (can be lost!)

 k-ary tournament selection
draw k individuals uniformly at random (typically with replacement) from P
choose individual with best fitness (break ties at random)

= has all advantages of rank-based selection and k K
o e . 1 < e
probability that best individual does not survive: |1 — — S 4k
% >
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Evolutionary Algorithm Basics

Selection methods without replacement
population P = (x4, X5, ..., X,) with u parents and

population Q = (y4, Y,, ---, ¥, ) with A offspring

* (u, A)-selection or truncation selection on offspring or comma-selection
rank A offspring according to their fitness
select p offspring with best ranks

= best individual may get lost, A =2 u required

* (ut+A)-selection or truncation selection on parents + offspring or plus-selection

merge A offspring and u parents
rank them according to their fithess

select u individuals with best ranks

= best individual survives for sure
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Evolutionary Algorithm Basics

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring,
best survives with probability 1

- Forced elitism: if best individual has not survived then re-injection into population,
l.e., replace worst selected individual by previously best parent

method

neutral

fithess proportionate
rank proportionate
k-ary tournament
(h+2)

(n, )

technische universitat
dortmund

P{ select best }

from parents & offspring intrinsic elitism
no no
no no
no no
no no
yes yes
no no
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Evolutionary Algorithm Basics

Variation operators: depend on representation

—  mutation — alters a single individual

recombination — creates single offspring from two or more parents

may be applied

e exclusively (either recombination or mutation) chosen in advance
e exclusively (either recombination or mutation) in probabilistic manner
e sequentially (typically, recombination before mutation); for each offspring

e sequentially (typically, recombination before mutation) with some probability
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Evolutionary Algorithm Basics

Variation in[B"

Individuals € {0, 1 }"

e Mutation
a) local — choose index k € {1, ..., n } uniformly at random,
flip bit k, i.e., x, =1 — X,
b) global — for each index k € {1, ..., n }: flip bit k with probability p,, € (0,1)
c) “nonlocal® — choose K indices at random and flip bits with these indices
d) inversion — choose start index k, and end index k, at random
invert order of bits between start and end index
1 1 0 — 0 1
0 k=2 1 0 .0 ke 1
0 0 1 K=2 [ 0
1 1 0 — 0 k., O
1 a) 1 b) 1 c) 1 d 1
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Evolutionary Algorithm Basics

Variation inB" Individuals € {0, 1}"
e Recombination (two parents)

a) 1-point crossover — draw cut-point k € {1,...,n-1} uniformly at random;
choose first k bits from 1st parent,
choose last n-k bits from 2nd parent

b) K-point crossover — draw K distinct cut-points uniformly at random;
choose bits 1 to k, from 1st parent,
choose bits k,+1 to k, from 2nd parent,
choose bits k,+1 to k; from 1st parent, and so forth ...

c) uniform crossover — for each index i: choose bit i with equal probability
from 1st or 2nd parent

1 O 1 1 O 1 1 0 0

0 1 _ 1 0 1 _ 1 an -

0O 1 1 0O 1 0 0 1 0

a) 1 1 1 by 1 1 1 c) 1 1 1
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Evolutionary Algorithm Basics

Variation inB" Individuals € {0, 1}"
e Recombination (multiparent: p = #parents)

a) diagonal crossover (2 < p <n)

— choose p — 1 distinct cut points, select chunks from diagonals

AAAAANAAAA ABBBCCDDDD ) can aenerate o offsoring:
N A i PeCCDDAARA >~ othe?wise chogse inﬁtialgc’;hunk
dccdgcdcccce CDDDAABBBB ) .

at random for single offspring
DODDODDDDDD DAAABBCCCC

b) gene pool crossover (p > 2)

— for each gene: choose donating parent uniformly at random

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 20



Evolutionary Algorithm Basics

Variation in I’ Individuals € X = r(1, ..., n)
e Mutation
a) local — 2-swap / 1-translocation
53241 5 3\2/4: 1
54231 52431
b) global — draw number K of 2-swaps, apply 2-swaps K times

K is positive random variable;
its distribution may be uniform, binomial, geometrical, ...;
E[K] and V[K] may control mutation strength

/ \

expectation variance
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Evolutionary Algorithm Basics

Variation in P Individuals € X =x(1, ..., n)

e Recombination (two parents)

=

]
]
X
d
=
o o N o

a) order-based crossover (OBX) 2 35 |7

- select two indices k, and k, with k, <k, uniformly at random

- copy genes k; to k, from 1st parent to offspring (keep positions)

- copy genes from left (pos. 1) to right (pos. n) of 2" parent,
insert after pos. k, in offspring (skip values already contained) 5 32 71

BOX O o

N
w
8
<D
=
o)
S

b) partially mapped crossover (PMX) [a version of]

o)
18
8
w
d
=

- select two indices k, and k, with k, <k, uniformly at random
- copy genes k; to k, from 1st parent to offspring (keep positions)
- copy all genes not already contained in offspring from 2" parent

]
]
X%
d
=
o)
X%

(keep positions) x 45716 x
- from left to right: fill in remaining genes from 2" parent
3457162
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Evolutionary Algorithm Basics

Variation in P Individuals € X =x(1, ..., n)

e Recombination (two parents)

c) partially mapped crossover (PMX) [Grefenstette et al. 1985] 2 3 5|7 1 6|4
— consider array as ring! 6 453 721
- given: 2 permutations a and b of length n 6 45 3|72 1
- select 2 indices k4 and k, uniformly at random
- copy b to c 6 457 3 2|1
- procedure = 6la 5 712 3

i =kl
repeat 2 45716 3
j = findIndex(a[i], c)
swap (c[i], <[j])
i=(i+1) modn
until i == k2
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Evolutionary Algorithm Basics

Variation inR" Individuals X e R"

e Mutation
additive: Y=X+Z (Z: n-dimensional random vector)
A0t X
offspring = parent + mutation
a) local — Z with bounded support Definition
Let f,:R"—R* be p.d.f. of r.v. Z.
fz4 A Theset{x eR":f,(x)>0}is
A fz(x) = 3 (1—2%)-1_y(z) termed the support of Z.
0 ! >
0
b) nonlocal — Z with unbounded support )
fZ A
1 72 > most frequently used!
A fale) = o= exp (—7)
07 I > J
0 X
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Evolutionary Algorithm Basics

Variation in R" Individuals X e R"

e Recombination (two parents)
a) all crossover variants adapted from B"
b) intermediate z=¢- x4+ (1—=¢&) -y with £ € [0,1]
c) intermediate (per dimension) Vi:z; =¢&; - x; + (1 —&;) - y; with & € [0, 1]
d) discrete Vi:z; =B x;+ (1 — B;) - y; with B; ~ B(1, 3)
e) simulated binary crossover (SBX)

— for each dimension with probability p, draw z; from:

|
X Yi
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Evolutionary Algorithm Basics

Variation in R" Individuals X e R"

e Recombination (multiparent), p = 3 parents

p p
a) intermediate z = Zf(k) :cf;k) where Zg(k) =1 and f(k) >0
k=1 k=1

(all points in convex hull)

P
b) intermediate (per dimension) Vi: z; = ngk) :vf;k)

k=1
Vi:z; € [min{xz(-k)}, mgx{xgk)}

k
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Evolutionary Algorithm Basics

Theorem
Let f:R" — R be a strictly quasiconvex function. If f(x) = f(y) for some x # y then

every offspring generated by intermediate recombination is better than its parents.

Proof:

f strictly quasiconvex = f(&-x4+(1—-¢€)-y) < max{ f(x), f(y) } for0 < £ < 1

since f(x) = f(y) = max{ f(z),f(y)} = min{ f(z), f(y)}
= f(§ x4+ (1) y) <min{ f(z), f(y) } for 0 <& <1
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Evolutionary Algorithm Basics

Theorem
Let f:R" — R be a differentiable function and f(x) < f(y) for some x # .

If (y — x)° Vf(x) < 0 then there is a positive probability that an offspring
generated by intermediate recombination is better than both parents.

Proof:

If 'V f(x) <0 then d € R" is a direction of descent, i.e.
35> 0:Vs€(0,8]: f(x+s-d) < f(x).

Here: d =y — x such that P{f((xz+ (1 — ) y) < f(x)} > Tl >0. m
Yy
Sy
sublevel set S, = {z € R" : f(z) < a}
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