
Computational Intelligence
Winter Term 2025/26

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
2

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
2

Plan for Today

● Evolutionary Algorithms (EA)

● Optimization Basics

● EA Basics

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
3

Optimization Basics

?! !

!! ?

!? !

modelling

simulation

optimization

system outputinput

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
4

Optimization Basics

optimization problem:

find x* ∈ X such that f(x*) = min{ f(x) : x ∈ X }

note:

max{ f(x) : x ∈ X } = – min{ – f(x) : x ∈ X }

x* global solution

f(x*) global optimum

objective: find solution with minimal or maximal value!

given:
objective function f: X →

feasible region X (= nonempty set)

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
5

Optimization Basics

local solution x* ∈ X :

∀x ∈ N(x*): f(x*) ≤ f(x)

neighborhood of x* =
bounded subset of X

example: X = n, Nε(x*) = { x ∈ X: || x – x*||2 ≤ ε }

if x* local solution then

f(x*) local optimum / minimum

remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

a bx*

example:
f: [a,b] → , global solution at x*

(ε > 0)

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
6

Optimization Basics

What makes optimization difficult?

some causes:

• local optima (is it a global optimum or not?)

• constraints (e.g. ill-shaped feasible region)

• non-smoothness / ruggedness (weak causality)

• discontinuities (⇒ nondifferentiability, no gradients)

• lack of knowledge about problem (⇒ black / gray box optimization)

f(x) = a1 x1 + ... + an xn → max! with xi ∈ {0,1}, ai ∈

add constaint g(x) = b1 x1 + ... + bn xn ≤ b
⇒ xi* = 1 iff ai > 0
⇒ NP-hard

add capacity constraint to TSP ⇒ CVRP ⇒ even harder

strong causality needed!

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
7

Optimization Basics

When using which optimization method?

mathematical algorithms

• problem explicitly specified

• problem-specific solver available

• problem well understood

• ressources for designing
algorithm affordable

• solution with proven quality
required

⇒ don‘t apply EAs

randomized search heuristics

• problem given by black / gray box

• no problem-specific solver available

• problem poorly understood

• insufficient ressources for designing
algorithm

• solution with satisfactory quality
sufficient

⇒ EAs worth a try

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
8

Evolutionary Algorithm Basics

idea: using biological evolution as metaphor and as pool of inspiration

⇒ interpretation of biological evolution as iterative method of improvement

feasible solution x ∈ X = S1 x ... x Sn = chromosome of individual

multiset of feasible solutions = population: multiset of individuals

objective function f: X → = fitness function

often: X = n, X = n = {0,1}n, X = n = { π : π is permutation of {1,2,...,n} }

also : combinations like X = n x p x q or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
9

Evolutionary Algorithm Basics

initialize population

evaluation

parent selection

variation (yields offspring)

survival selection (yields new population)

evaluation (of offspring)

stop?

output: best individual found
Y

N

algorithmic
skeleton

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
10

Evolutionary Algorithm Basics

population size = 1, number of offspring = 1, selects best from 1+1 individuals

parent offspring

1. initialize X(0) ∈ n uniformly at random, set t = 0

2. evaluate f(X(t))

3. select parent: Y = X(t)

4. variation: flip each bit of Y independently with probability pm = 1/n

5. evaluate f(Y)

6. selection: if f(Y) ≤ f(X(t)) then X(t+1) = Y else X(t+1) = X(t)

7. if not stopping then t = t+1, continue at (3)

no choice, here

Specific example: (1+1)-EA in n for minimizing some f: n →

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
11

Evolutionary Algorithm Basics

population size = 1, number of offspring = 1, selects best from 1+1 individuals

parent offspring

1. initialize X(0) ∈ C ⊂ n uniformly at random, set t = 0

2. evaluate f(X(t))

3. select parent: Y = X(t)

4. variation = add random vector: Y = Y + Z, e.g. Z ∼ N(0, In)

5. evaluate f(Y)

6. selection: if f(Y) ≤ f(X(t)) then X(t+1) = Y else X(t+1) = X(t)

7. if not stopping then t = t+1, continue at (3)

no choice, here

compact set = closed & bounded

Specific example: (1+1)-EA in n for minimizing some f: n →

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
12

Evolutionary Algorithm Basics

Selection

(a) select parents that generate offspring → selection for reproduction

(b) select individuals that proceed to next generation → selection for survival

necessary requirements:

- selection steps must not favor worse individuals

- one selection step may be neutral (e.g. select uniformly at random)

- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals‘ chromosomes x (→ maintain diversity)

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
13

Evolutionary Algorithm Basics

Selection methods

population P = (x1, x2, ..., xµ) with µ individuals

• uniform / neutral selection
choose index i with probability 1/µ

• fitness-proportional selection
choose index i with probability si =

two approaches:

1. repeatedly select individuals from population with replacement

2. rank individuals somehow and choose those with best ranks (no replacement)

problems: f(x) > 0 for all x ∈ X required ⇒ g(x) = exp(f(x)) > 0

but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
14

Evolutionary Algorithm Basics

Selection methods

population P = (x1, x2, ..., xµ) with µ individuals

• rank-proportional selection
order individuals according to their fitness values
assign ranks
fitness-proportional selection based on ranks

⇒ avoids all problems of fitness-proportional selection
but: best individual has only small selection advantage (can be lost!)

• k-ary tournament selection
draw k individuals uniformly at random (typically with replacement) from P
choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and
probability that best individual does not survive:

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
15

Evolutionary Algorithm Basics

Selection methods without replacement

population P = (x1, x2, ..., xµ) with µ parents and

population Q = (y1, y2, ..., yλ) with λ offspring

• (µ, λ)-selection or truncation selection on offspring or comma-selection
rank λ offspring according to their fitness
select µ offspring with best ranks

⇒ best individual may get lost, λ ≥ µ required

• (µ+λ)-selection or truncation selection on parents + offspring or plus-selection
merge λ offspring and µ parents
rank them according to their fitness
select µ individuals with best ranks

⇒ best individual survives for sure

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
16

Evolutionary Algorithm Basics

Selection methods: Elitism

- Intrinsic elitism: method selects from parent and offspring,
best survives with probability 1

- Forced elitism: if best individual has not survived then re-injection into population,
i.e., replace worst selected individual by previously best parent

method P{ select best } from parents & offspring intrinsic elitism
neutral < 1 no no
fitness proportionate < 1 no no
rank proportionate < 1 no no
k-ary tournament < 1 no no
(µ + λ) = 1 yes yes
(µ , λ) = 1 no no

Elitist selection: best parent is not replaced by worse individual.

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
17

Evolutionary Algorithm Basics

Variation operators: depend on representation

mutation → alters a single individual

recombination → creates single offspring from two or more parents

may be applied

● exclusively (either recombination or mutation) chosen in advance

● exclusively (either recombination or mutation) in probabilistic manner

● sequentially (typically, recombination before mutation); for each offspring

● sequentially (typically, recombination before mutation) with some probability

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
18

Evolutionary Algorithm Basics

● Mutation

Individuals ∈ { 0, 1 }n

a) local → choose index k ∈ { 1, …, n } uniformly at random,
flip bit k, i.e., xk = 1 – xk

b) global → for each index k ∈ { 1, …, n }: flip bit k with probability pm ∈ (0,1)

c) “nonlocal“ → choose K indices at random and flip bits with these indices

d) inversion → choose start index ks and end index ke at random
invert order of bits between start and end index

1
0
0
1
1

1
1
0
1
1a)

k=2
0
0
1
0
1b)

1
1
0
0
1

ks

ke
d)

0
0
0
0
1c)

K=2

→

→

Variation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
19

Evolutionary Algorithm Basics

● Recombination (two parents)

a) 1-point crossover → draw cut-point k ∈ {1,…,n-1} uniformly at random;
choose first k bits from 1st parent,
choose last n-k bits from 2nd parent

b) K-point crossover → draw K distinct cut-points uniformly at random;
choose bits 1 to k1 from 1st parent,
choose bits k1+1 to k2 from 2nd parent,
choose bits k2+1 to k3 from 1st parent, and so forth …

c) uniform crossover → for each index i: choose bit i with equal probability
from 1st or 2nd parent

1
0
0
1

0
1
1
1

1
1
1
1a)

⇒

1
0
0
1

0
1
1
1

0
0
0
1c)

⇒

1
0
0
1

0
1
1
1

1
1
0
1b)

⇒

Individuals ∈ { 0, 1 }nVariation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
20

Evolutionary Algorithm Basics

● Recombination (multiparent: ρ = #parents)

b) gene pool crossover (ρ > 2)

Individuals ∈ { 0, 1 }n

a) diagonal crossover (2 < ρ < n)

AAAAAAAAAA
BBBBBBBBBB
CCCCCCCCCC
DDDDDDDDDD

→ choose ρ – 1 distinct cut points, select chunks from diagonals
ABBBCCDDDD
BCCCDDAAAA
CDDDAABBBB
DAAABBCCCC

can generate ρ offspring;
otherwise choose initial chunk
at random for single offspring

→ for each gene: choose donating parent uniformly at random

Variation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
21

Evolutionary Algorithm Basics

● Mutation

a) local → 2-swap / 1-translocation

b) global → draw number K of 2-swaps, apply 2-swaps K times

5 3 2 4 1

5 4 2 3 1

5 3 2 4 1

5 2 4 3 1

K is positive random variable;
its distribution may be uniform, binomial, geometrical, …;
E[K] and V[K] may control mutation strength

expectation variance

Individuals ∈ X = π(1, …, n) Variation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
22

Evolutionary Algorithm Basics

● Recombination (two parents)

Individuals ∈ X = π(1, …, n)

b) partially mapped crossover (PMX) [a version of]

- select two indices k1 and k2 with k1 ≤ k2 uniformly at random
- copy genes k1 to k2 from 1st parent to offspring (keep positions)
- copy all genes not already contained in offspring from 2nd parent

(keep positions)
- from left to right: fill in remaining genes from 2nd parent

a) order-based crossover (OBX)
- select two indices k1 and k2 with k1 ≤ k2 uniformly at random
- copy genes k1 to k2 from 1st parent to offspring (keep positions)
- copy genes from left (pos. 1) to right (pos. n) of 2nd parent,

insert after pos. k2 in offspring (skip values already contained)

x x x 7 1 6 x

5 3 2 7 1 6 4

2 3 5 7 1 6 4
6 4 5 3 7 2 1

2 3 5 7 1 6 4
6 4 5 3 7 2 1

x x x 7 1 6 x

x 4 5 7 1 6 x

3 4 5 7 1 6 2

Variation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
23

Evolutionary Algorithm Basics

● Recombination (two parents)

Individuals ∈ X = π(1, …, n)

c) partially mapped crossover (PMX) [Grefenstette et al. 1985]

→ consider array as ring!

- given: 2 permutations a and b of length n
- select 2 indices k1 and k2 uniformly at random
- copy b to c
- procedure =

6 4 5 3 7 2 1

6 4 5 7 3 2 1

2 3 5 7 1 6 4
6 4 5 3 7 2 1

Variation in n

i = k1
repeat

j = findIndex(a[i], c)
swap(c[i], c[j])
i = (i + 1) mod n

until i == k2

6 4 5 7 1 2 3

2 4 5 7 1 6 3

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
24

Evolutionary Algorithm Basics

● Mutation

a) local → Z with bounded support Definition
Let fZ: n→ + be p.d.f. of r.v. Z.
The set { x ∈ n : fZ(x) > 0 } is
termed the support of Z.

additive: Y = X + Z (Z: n-dimensional random vector)

offspring = parent + mutation

x
0

fZ

0

b) nonlocal → Z with unbounded support
fZ

x
0

0

most frequently used!

Variation in n Individuals X ∈ n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
25

Evolutionary Algorithm Basics

● Recombination (two parents)

b) intermediate

c) intermediate (per dimension)

d) discrete

e) simulated binary crossover (SBX)

→ for each dimension with probability pc draw from:

Variation in n Individuals X ∈ n

a) all crossover variants adapted from n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
26

Evolutionary Algorithm Basics

● Recombination (multiparent), ρ ≥ 3 parents

a) intermediate where and

(all points in convex hull)

b) intermediate (per dimension)

Variation in n Individuals X ∈ n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
27

Evolutionary Algorithm Basics

Proof:

■

Theorem
Let f: n → be a strictly quasiconvex function. If f(x) = f(y) for some x ≠ y then
every offspring generated by intermediate recombination is better than its parents.

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
28

Evolutionary Algorithm Basics

Proof:

■

Theorem
Let f: n → be a differentiable function and f(x) < f(y) for some x ≠ y.
If (y – x)‘ ∇f(x) < 0 then there is a positive probability that an offspring
generated by intermediate recombination is better than both parents.

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28

