

Computational Intelligence

Winter Term 2025/26

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Evolutionary Algorithms (EA)
 - Optimization Basics
 - EA Basics

modelling simulation optimization input system output given:

objective function $f: X \to \mathbb{R}$

feasible region X (= nonempty set)

objective: find solution with minimal or maximal value!

optimization problem:

find $x^* \in X$ such that $f(x^*) = \min\{ f(x) : x \in X \}$

x* global solution

f(x*) global optimum

note:

 $\max\{ f(x) : x \in X \} = -\min\{ -f(x) : x \in X \}$

Optimization Basics

Lecture 06

local solution $x^* \in X$:

$$\forall x \in N(x^*): f(x^*) \leq f(x)$$

neighborhood of x* = bounded subset of X

if x* local solution then f(x*) local optimum / minimum

example:
$$X = \mathbb{R}^n$$
, $N_{\epsilon}(x^*) = \{ x \in X : ||x - x^*||_2 \le \epsilon \}$ $(\epsilon > 0)$

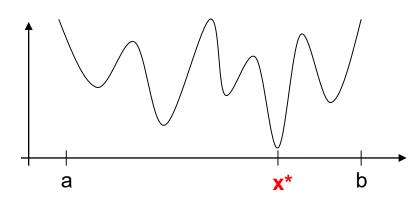
remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

example:

f: [a,b] $\to \mathbb{R}$, global solution at \mathbf{x}^*



What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (e.g. ill-shaped feasible region)
- discontinuities (⇒ nondifferentiability, no gradients)
- lack of knowledge about problem (⇒ black / gray box optimization)

→
$$f(x) = a_1 x_1 + ... + a_n x_n \rightarrow max!$$
 with $x_i \in \{0,1\}, a_i \in \mathbb{R}$
add constaint $g(x) = b_1 x_1 + ... + b_n x_n \le b$

$$\Rightarrow$$
 x_i* = 1 iff a_i > 0

⇒ NP-hard

add capacity constraint to TSP ⇒ CVRP

⇒ even harder

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required

⇒ don't apply EAs

randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient

⇒ EAs worth a try

idea: using biological evolution as metaphor and as pool of inspiration

⇒ interpretation of biological evolution as iterative method of improvement

feasible solution $x \in X = S_1 \times ... \times S_n$ = chromosome of **individual**

multiset of feasible solutions = population: multiset of individuals

objective function $f: X \to \mathbb{R}$ = fitness function

often: $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,...,n\} \}$ also: combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual

Evolutionary Algorithm Basics

algorithmic skeleton

```
initialize population
evaluation
parent selection
variation (yields offspring)
evaluation (of offspring)
survival selection (yields new population)
stop?
 ↓ Y
output: best individual found
```

Specific example: (1+1)-EA in \mathbb{B}^n for minimizing some $f: \mathbb{B}^n \to \mathbb{R}$

population size = 1, number of offspring = 1, selects best from 1+1 individuals

† †
parent offspring

- 1. initialize $X^{(0)} \in \mathbb{B}^n$ uniformly at random, set t = 0
- 2. evaluate f(X^(t))
- 3. select parent: Y = X^(t)

no choice, here

- 4. variation: flip each bit of Y independently with probability $p_m = 1/n$
- 5. evaluate f(Y)
- 6. selection: if $f(Y) \le f(X^{(t)})$ then $X^{(t+1)} = Y$ else $X^{(t+1)} = X^{(t)}$
- 7. if not stopping then t = t+1, continue at (3)

Specific example: (1+1)-EA in \mathbb{R}^n for minimizing some $f: \mathbb{R}^n \to \mathbb{R}$

population size = 1, number of offspring = 1, selects best from 1+1 individuals

↑ ↑ parent offspring

_compact set = closed & bounded

- 1. initialize $X^{(0)} \in \mathbb{C} \subset \mathbb{R}^n$ uniformly at random, set t = 0
- 2. evaluate f(X^(t))
- 3. select parent: Y = X^(t)

no choice, here

- 4. variation = add random vector: Y = Y + Z, e.g. $Z \sim N(0, I_n)$
- 5. evaluate f(Y)
- 6. selection: if $f(Y) \le f(X^{(t)})$ then $X^{(t+1)} = Y$ else $X^{(t+1)} = X^{(t)}$
- 7. if not stopping then t = t+1, continue at (3)

Selection

- (a) select parents that generate offspring → selection for **reproduction**
- (b) select individuals that proceed to next generation → selection for **survival**

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals

typically: selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals' chromosomes x (→ maintain diversity)

Selection methods

population P = $(x_1, x_2, ..., x_{\mu})$ with μ individuals

two approaches:

- 1. repeatedly select individuals from population with replacement
- 2. rank individuals somehow and choose those with best ranks (no replacement)
- uniform / neutral selection
 choose index i with probability 1/μ
- fitness-proportional selection choose index i with probability $\mathbf{s_i} = \frac{f(x_i)}{\sum\limits_{x \in P} f(x)}$

problems: f(x) > 0 for all $x \in X$ required $\Rightarrow g(x) = \exp(f(x)) > 0$

but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

Selection methods

population P = $(x_1, x_2, ..., x_u)$ with μ individuals

- rank-proportional selection order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks
- outdated! ⇒ avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!)

k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

 \Rightarrow has all advantages of rank-based selection and probability that best individual does not survive: $\left(1-\frac{1}{\mu}\right)^{k\,\mu} < e^{-k} \geq 4^{-k}$

Selection methods without replacement

population P =
$$(x_1, x_2, ..., x_{\mu})$$
 with μ parents and population Q = $(y_1, y_2, ..., y_{\lambda})$ with λ offspring

- (μ , λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks
- \Rightarrow best individual may get lost, $\lambda \ge \mu$ required
- (μ + λ)-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
- ⇒ best individual survives for sure

Evolutionary Algorithm Basics

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring,

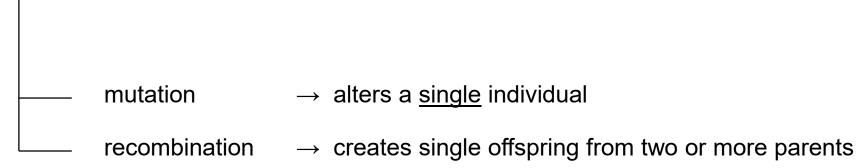
best survives with probability 1

- Forced elitism: if best individual has not survived then re-injection into population,

i.e., replace worst selected individual by previously best parent

method	P{ select best }	from parents & offspring	intrinsic elitism
neutral	< 1	no	no
fitness proportionate	< 1	no	no
rank proportionate	< 1	no	no
k-ary tournament	< 1	no	no
$(\mu + \lambda)$	= 1	yes	yes
(μ, λ)	= 1	no	no

Variation operators: depend on representation



may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability

Variation in **B**ⁿ

Individuals $\in \{0, 1\}^n$

- Mutation
 - a) local

→ choose index $k \in \{1, ..., n\}$ uniformly at random, flip bit k, i.e., $x_k = 1 - x_k$

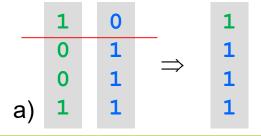
b) global

- \rightarrow for each index $k \in \{1, ..., n\}$: flip bit k with probability $p_m \in (0,1)$
- c) "nonlocal"
- → choose K indices at random and flip bits with these indices
- d) inversion
- → choose start index k_s and end index k_e at random invert order of bits between start and end index

Variation in **B**ⁿ

Individuals $\in \{0, 1\}^n$

- Recombination (two parents)
 - a) 1-point crossover
- → draw cut-point k ∈ {1,...,n-1} uniformly at random; choose first k bits from 1st parent, choose last n-k bits from 2nd parent
- b) K-point crossover
- → draw K distinct cut-points uniformly at random; choose bits 1 to k₁ from 1st parent, choose bits k₁+1 to k₂ from 2nd parent, choose bits k₂+1 to k₃ from 1st parent, and so forth ...
- c) uniform crossover
- → for each index i: choose bit i with equal probability from 1st or 2nd parent



	1	0		1	
	0	1		1	
	0	1	— <i>—</i> /	0	
b)	1	1		1	

	1	0		0
	0	1		0
	0	1	\rightarrow	0
)	1	1		1
•				

C

Variation in Bⁿ

Individuals $\in \{0, 1\}^n$

- Recombination (multiparent: ρ = #parents)
 - a) diagonal crossover $(2 < \rho < n)$
 - \rightarrow choose ρ 1 distinct cut points, select chunks from diagonals

can generate ρ offspring; otherwise choose initial chunk at random for single offspring

- b) gene pool crossover ($\rho > 2$)
 - → for each gene: choose donating parent uniformly at random

Evolutionary Algorithm Basics

Lecture 06

Variation in \mathbb{P}_n

Individuals $\in X = \pi(1, ..., n)$

Mutation

a) local \rightarrow 2-swap / 1-trans

1-translocation

53241

5 3 2 4 1

54231

52431

b) global

 \rightarrow draw number K of 2-swaps, apply 2-swaps K times

K is positive random variable;

its distribution may be uniform, binomial, geometrical, ...;

E[K] and V[K] may control mutation strength

expectation

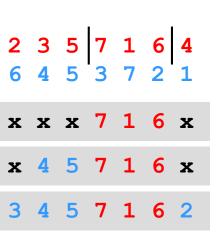
variance

Variation in \mathbb{P}_n

Individuals
$$\in X = \pi(1, ..., n)$$

- Recombination (two parents)
 - a) order-based crossover (OBX)
 - select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random
 - copy genes k₁ to k₂ from 1st parent to offspring (keep positions)
 - copy genes from left (pos. 1) to right (pos. n) of 2nd parent, insert after pos. k₂ in offspring (skip values already contained)

- b) partially mapped crossover (PMX) [a version of]
 - select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random
 - copy genes k₁ to k₂ from 1st parent to offspring (keep positions)
 - copy all genes not already contained in offspring from 2nd parent (keep positions)
 - from left to right: fill in remaining genes from 2nd parent



Variation in \mathbb{P}_n

Individuals $\in X = \pi(1, ..., n)$

- Recombination (two parents)
 - c) partially mapped crossover (PMX) [Grefenstette et al. 1985]
 - → consider array as ring!
 - given: 2 permutations a and b of length n
 - select 2 indices k₁ and k₂ uniformly at random
 - copy b to c
 - procedure =

```
i = k1
repeat
    j = findIndex(a[i], c)
    swap(c[i], c[j])
    i = (i + 1) mod n
until i == k2
```

```
2 3 5 7 1 6 4
6 4 5 3 7 2 1
6 4 5 7 3 2 1
6 4 5 7 1 2 3
```

4 5 7 1 6 3

Variation in \mathbb{R}^n

Individuals $X \in \mathbb{R}^n$

Mutation

additive:

$$Y = X + Z$$

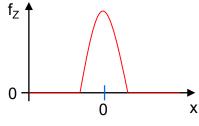
f f v

offspring = parent + mutation

(Z: n-dimensional random vector)

a) local

→ Z with bounded support

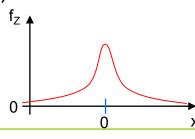


$$f_Z(x) = \frac{4}{3} (1 - x^2) \cdot 1_{[-1,1]}(x)$$

Definition

Let $f_Z: \mathbb{R}^n \to \mathbb{R}^+$ be p.d.f. of r.v. Z. The set $\{x \in \mathbb{R}^n : f_Z(x) > 0 \}$ is termed the <u>support</u> of Z.

b) nonlocal \rightarrow Z with unbounded support



$$f_Z(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

most frequently used!

Variation in \mathbb{R}^n

Individuals $X \in \mathbb{R}^n$

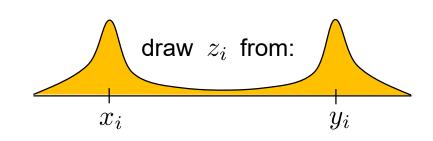
- Recombination (two parents)
 - a) all crossover variants adapted from \mathbb{B}^n
 - b) intermediate

$$z = \xi \cdot x + (1 - \xi) \cdot y$$
 with $\xi \in [0, 1]$

- c) intermediate (per dimension) $\forall i: z_i = \xi_i \cdot x_i + (1 \xi_i) \cdot y_i \text{ with } \xi_i \in [0, 1]$
- d) discrete

$$\forall i: z_i = B_i \cdot x_i + (1 - B_i) \cdot y_i \text{ with } B_i \sim B(1, \frac{1}{2})$$

- e) simulated binary crossover (SBX)
 - \rightarrow for each dimension with probability p_{c}



Variation in \mathbb{R}^n

Individuals $X \in \mathbb{R}^n$

• Recombination (multiparent), $\rho \ge 3$ parents

a) intermediate
$$z=\sum_{k=1}^{\rho}\xi^{(k)}\,x_i^{(k)}$$
 where $\sum_{k=1}^{\rho}\xi^{(k)}=1$ and $\xi^{(k)}\geq 0$

(all points in convex hull)

b) intermediate (per dimension)
$$\forall i: z_i = \sum_{k=1}^r \xi_i^{(k)} x_i^{(k)}$$

$$\forall i : z_i \in \left[\min_{k} \{x_i^{(k)}\}, \max_{k} \{x_i^{(k)}\}\right]$$

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a strictly quasiconvex function. If f(x) = f(y) for some $x \neq y$ then every offspring generated by intermediate recombination is better than its parents.

Proof:

$$f$$
 strictly quasiconvex $\Rightarrow f(\xi \cdot x + (1-\xi) \cdot y) < \max\{f(x), f(y)\}$ for $0 < \xi < 1$

since
$$f(x) = f(y)$$
 \Rightarrow $\max\{f(x), f(y)\} = \min\{f(x), f(y)\}$

$$\Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{f(x), f(y)\} \text{ for } 0 < \xi < 1$$

Evolutionary Algorithm Basics

Theorem

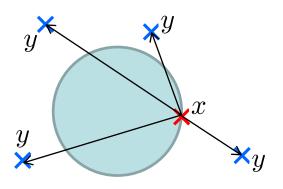
Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and f(x) < f(y) for some $x \neq y$. If (y - x), $\nabla f(x) < 0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

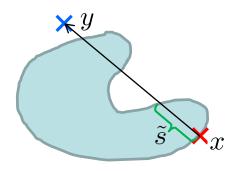
Proof:

If $d'\nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e.

$$\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}] : f(x + s \cdot d) < f(x).$$

Here:
$$d = y - x$$
 such that $P\{f(\xi x + (1 - \xi)y) < f(x)\} \ge \frac{\tilde{s}}{\|d\|} > 0$.





sublevel set $S_{\alpha} = \{x \in \mathbb{R}^n : f(x) < \alpha\}$