technische universitat
dortmund

Computational Intelligence
Winter Term 2025/26

Prof. Dr. Gunter Rudolph
Computational Intelligence
Fakultat fur Informatik

TU Dortmund

Plan for Today

e Evolutionary Algorithms (EA)

e Optimization Basics

e EABasics
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 2

Optimization Basics
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Optimization Basics

given:
objective functionf: X - R

feasible region X (= nonempty set)

objective: find solution with minimal or maximal value!

*

optimization problem: x* global solution
find x* € X such that f(x*) = min{ f(x) : x € X } f(x*) global optimum
note:

max{f(x) :x e X}=—min{-f(x) : x € X}
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Optimization Basics

if x* local solution then

vx e N(x*): f(x*) < f(x)

local solution x* € X:
f(x*) local optimum / minimum

neighborhood of x* = example: X=R", N(x*)={xe X || x=X*|,<e} (¢>0)
bounded subset of X
remark:
evidently, every global solution / optimum is also local solution / optimum;
the reverse is wrong in general!
example:
f: [a,b] — R, global solution at x*
I a x* b
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Optimization Basics

What makes optimization difficult?

some causes:
* local optima (is it a global optimum or not?)

— < constraints (e.qg. ill-shaped feasible region)
* non-smoothness / ruggedness (weak causality) ——— strong causality needed!
« discontinuities (= nondifferentiability, no gradients)

* lack of knowledge about problem (= black / gray box optimization)

— f(x)=a, x, +... +a,x, — max! with x; € {0,1}, a; eR = x*=1iffa,>0

add constaint g(x)=b,;x;+...+b,x,<b = NP-hard

add capacity constraint to TSP = CVRP = even harder
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Optimization Basics

When using which optimization method?

mathematical algorithms randomized search heuristics

« problem explicitly specified * problem given by black / gray box

* problem-specific solver available * no problem-specific solver available
* problem well understood * problem poorly understood

« insufficient ressources for designing
algorithm

« ressources for designing
algorithm affordable

* solution with proven quality
required

« solution with satisfactory quality
sufficient

= don‘t apply EAs = EAs
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Evolutionary Algorithm Basics

idea: using biological evolution as metaphor and as pool of inspiration

= interpretation of biological evolution as iterative method of improvement

feasible solution x e X=8;,x...x§, = chromosome of individual

multiset of feasible solutions = population: multiset of individuals

objective function f: X —» R = fitness function

often: X =R", X=B"={0,1}", X=P, = {=n: nis permutation of {1,2,...,n} }

also : combinations like X =R" x BP x P, or non-cartesian sets

= structure of feasible region / search space defines representation of individual
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Evolutionary Algorithm Basics

algorithmic
skeleton

initialize population

evaluation

‘

— parent selection

'
variation (yields offspring)

.

evaluation (of offspring)

'

survival selection (yields new population)

{

L stop?
Iy

output: best individual found
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Evolutionary Algorithm Basics

Specific example: (1+1)-EA inB" for minimizing some f:B" — R

population size = 1, number of offspring = 1, selects best from 1+1 individuals

tt

parent offspring

1. initialize X© eB" uniformly at random, sett =0

2. evaluate f(X®)

3. select parent: Y = X® > no choice, here
4. variation: flip each bit of Y independently with probability p,, = 1/n

5. evaluate f(Y)

6. selection: if f(Y) < f(X®) then X1 =Y else Xt1) = X®

7. if not stopping then t = t+1, continue at (3)
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Evolutionary Algorithm Basics

Specific example: (1+1)-EA inR" for minimizing some f:R" — R

population size = 1, number of offspring = 1, selects best from 1+1 individuals

tt

parent offspring

compact set = closed & bounded

initialize X e C < R" uniformly at random, sett =0
evaluate f(X®)

select parent: Y = X® >

no choice, here
variation = add random vector: Y=Y + Z, e.g. Z~N(0, I)

evaluate f(Y)

selection: if f(Y) < f(X®) then X1 =Y else Xt+1) = X®

N o o~ w0 DN =

if not stopping then t = t+1, continue at (3)
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Evolutionary Algorithm Basics

Selection

(a) select parents that generate offspring — selection for reproduction

(b) select individuals that proceed to next generation — selection for survival

necessary requirements:
- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)

- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals‘ chromosomes x (— maintain diversity)
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Evolutionary Algorithm Basics

Selection methods

population P = (x4, Xy, ..., X,) with p individuals

two approaches:
1. repeatedly select individuals from population with replacement

2. rank individuals somehow and choose those with best ranks (no replacement)

* uniform / neutral selection
choose index i with probability 1/u

« fitness-proportional selection f(xi)
choose index i with probability s; = m

TEP
problems: f(x) > 0 for all x € X required = g(x) =exp(f(x))>0
but already sensitive to additive shifts g(x) = f(x) + ¢

almost deterministic if large differences, almost uniform if small differences
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Evolutionary Algorithm Basics

Selection methods

population P = (x4, X,, ..., X,) with p individuals

* rank-proportional selection

order individuals according to their fithess values

assign ranks

o
(7
fithess-proportional selection based on ranks defed/

= avoids all problems of fithess-proportional selection
but: best individual has only small selection advantage (can be lost!)

* k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P
choose individual with best fitness (break ties at random)

= has all advantages of rank-based selection and 1\Fr
probability that best individual does not survive: ( )
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Evolutionary Algorithm Basics

Selection methods without replacement
population P = (x4, X,, .., X,) with p parents and

population Q = (y4, Yy, ..., ¥,) With A offspring

* (u, 1)-selection or truncation selection on offspring or comma-selection
rank M offspring according to their fitness
select p offspring with best ranks

= best individual may get lost, A = pu required

* (u+A)-selection or truncation selection on parents + offspring or plus-selection

merge A offspring and p parents
rank them according to their fitness

select p individuals with best ranks

= best individual survives for sure
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Evolutionary Algorithm Basics

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring,
best survives with probability 1

- Forced elitism: if best individual has not survived then re-injection into population,
i.e., replace worst selected individual by previously best parent

method P{ select best }
neutral <1
fitness proportionate <1
rank proportionate <1
k-ary tournament <1
(L+2) =1
(ws2) =1
technische universitat
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from parents & offspring intrinsic elitism
no no
no no
no no
no no
yes yes
no no
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Evolutionary Algorithm Basics

Variation operators: depend on representation

- mutation — alters a single individual

L recombination = — creates single offspring from two or more parents

may be applied

e exclusively (either recombination or mutation) chosen in advance
e exclusively (either recombination or mutation) in probabilistic manner
e sequentially (typically, recombination before mutation); for each offspring

e sequentially (typically, recombination before mutation) with some probability
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Evolutionary Algorithm Basics

Variation in[B" Individuals € {0, 1}

e Mutation
a) local — choose index k € {1, ..., n } uniformly at random,
flip bitk, i.e., x, =1 =X,
b) global — for each index k € {1, ..., n }: flip bit k with probability p,, € (0,1)
c) “nonlocal® — choose K indices at random and flip bits with these indices
d) inversion — choose start index k, and end index k, at random
invert order of bits between start and end index
1 1 0 — 0 1
0 k=2 1 0 0 ke 1
0 0 1 K=2 o 0
1 1 0 - 0 ke O
1 a) 1 by 1 c) 1 dy 1
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Evolutionary Algorithm Basics

Variation inB" Individuals € {0, 1}"

e Recombination (two parents)

a) 1-point crossover — draw cut-point k € {1,...,n-1} uniformly at random;
choose first k bits from 1st parent,
choose last n-k bits from 2nd parent

b) K-point crossover — draw K distinct cut-points uniformly at random;
choose bits 1 to k, from 1st parent,
choose bits k,+1 to k, from 2nd parent,

choose bits k,+1 to k; from 1st parent, and so forth ...

c) uniform crossover — for each index i: choose bit i with equal probability

from 1st or 2nd parent

H o olr
N =)
.
R o ok
H R Rro
HoRR
HoomRr
N = =)
Hooo

a) c)

technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26
dortmund 19

Evolutionary Algorithm Basics

Variation inB" Individuals € {0, 1 }"
e Recombination (multiparent: p = #parents)

a) diagonal crossover (2 < p <n)

— choose p — 1 distinct cut points, select chunks from diagonals

AAAANAAAA ABBBCCDDDD .

BBBBBBBBB BCCCDDAAAA Car? ge_nerathepoff.spr_lnlg;h K
gccgcgececce CDDDAABBBB O: erv(\glse? OO:SG :nltlif c .un
DDDDDDDDD DAAABBCCCC at random for singie ofispring

b) gene pool crossover (p > 2)

— for each gene: choose donating parent uniformly at random
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Evolutionary Algorithm Basics

Evolutionary Algorithm Basics

Variation in [P, Individuals € X = =(1, ..., n) Variation in I’ Individuals € X = n(1, ..., n)
e Mutation e Recombination (two parents)
a) local — 2-swap / 1-translocation a) order-based crossover (OBX) 235 |7 16 | 4
53241 53241 - select two indices k; and k, with k; < k, uniformly at random 6453721
- copy genes k, to k, from 15t parent to offspring (keep positions) xxx716x
x \/ - copy genes from left (pos. 1) to right (pos. n) of 2" parent,
54231 52431 insert after pos. k, in offspring (skip values already contained) 5327164
b) global — draw number K of 2-swaps, apply 2-swaps K times
) Y b) partially mapped crossover (PMX) [a version of] 235 |7 16 | 4
K is positive random variable; - select two indices k, and k, with k; <k, uniformly at random 6 3721
its distribution may be uniform, binomial, geometrical, ...; - copy genes k; to k; from 1¢! parent to offspring (keep positions) xxx716x
E[K] and V[K] may control mutation strength - copy all genes not already contained in offspring from 2n parent
(keep positions) x 4 716 x
/ \ - from left to right: fill in remaining genes from 2n parent
expectation variance 45716
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Evolutionary Algorithm Basics

Variation in P, Individuals € X = (1, ..., n)
e Recombination (two parents)
c) partially mapped crossover (PMX) [Grefenstette et al. 1985] 235 |7 1 6| 4
— consider array as ring! 6 453721
- given: 2 permutations a and b of length n 6 453 21
- select 2 indices k4 and k, uniformly at random
-copybtoc S 2
- procedure = EI 457123
i=k1
repeat 2457163

j = findIndex(a[i], c)

swap (c[i], <c[j])

i=4(i+ 1) modn
until i == k2
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Evolutionary Algorithm Basics

Variation inR" Individuals X e R"

e Mutation
additive: Y=X+Z (Z: n-dimensional random vector)
N B
offspring = parent + mutation
a) local — Z with bounded support Definition
Let f,:R"—R* be p.d.f. of r.v. Z.
f; A The set{x eR": f,(x)>01}is
fz(z) = 3 (1-2%) -1y y(z) termed the support of Z.
0
0 X
b) nonlocal — Z with unbounded support
fz
1 22 most frequently used!
fz(z) = N (—7>
0

0 X
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Evolutionary Algorithm Basics

Variation inR" Individuals X e R"

e Recombination (two parents)
a) all crossover variants adapted from B"
b) intermediate z=&- x4+ (1—=&) -y with £ € [0,1]
c) intermediate (per dimension)  Vi: z; =& - x; + (1 —&;) - y; with & € [0, 1]
d) discrete Vi:z; =B -z + (1—B;)-y; with B; ~ B(1, 3)
e) simulated binary crossover (SBX)

— for each dimension with probability p, draw z; from:

T
X Yi

technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26
dortmund 25

Evolutionary Algorithm Basics

Variation inR" Individuals X e R"

e Recombination (multiparent), p = 3 parents

P p
a) intermediate z = Zﬁ(k) xz(»k) where Zg(k) =1 and 5(’“) >0
k=1 k=1

(all points in convex hull)

p
b) intermediate (per dimension) Vi: z; = Zfi(k) a:,gk)
k=1

Vi:z € [mkln{xfk)}’ meX{xEk)}
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Evolutionary Algorithm Basics

Theorem
Let f:R" —R be a strictly quasiconvex function. If f(x) = f(y) for some x # y then
every offspring generated by intermediate recombination is better than its parents.

Proof:
f strictly quasiconvex = f(&-x+(1—-¢)-y) < max{ f(z), f(y) } for0 < & < 1
since f(z) = f(y) = max{f(z),f(y)} = min{ f(z),f(y)}

= f(§-z+(1-¢) - y) <min{ f(z), f(y) } for 0 << 1
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Evolutionary Algorithm Basics

Theorem
Let f:R" —R be a differentiable function and f(x) < f(y) for some x #y.

If (y — x)* Vf(x) < 0 then there is a positive probability that an offspring
generated by intermediate recombination is better than both parents.

Proof:

If 'V f(xz) <0 then d € R™ is a direction of descent, i.e.
35>0:Vs€(0,3]: f(x+s-d) < f(x).

Here: d =y — x such that P{f({z+ (1 -¢&)y) < f(z)} > — > 0. u

Y

sublevel set S, = {x € R": f(x) < a}
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