
Computational Intelligence
Winter Term 2025/26

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
2

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
2

Plan for Today

● Evolutionary Algorithms (EA)

● Optimization Basics

● EA Basics

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
3

Optimization Basics

?! !

!! ?

!? !

modelling

simulation

optimization

system outputinput

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
4

Optimization Basics

optimization problem:

find x* ∈ X such that f(x*) = min{ f(x) : x ∈ X }

note:

max{ f(x) : x ∈ X } = – min{ – f(x) : x ∈ X }

x* global solution

f(x*) global optimum

objective: find solution with minimal or maximal value!

given:
objective function f: X →

feasible region X (= nonempty set)

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
5

Optimization Basics

local solution x* ∈ X :

∀x ∈ N(x*): f(x*) ≤ f(x)

neighborhood of x* =
bounded subset of X

example: X = n, Nε(x*) = { x ∈ X: || x – x*||2 ≤ ε }

if x* local solution then

f(x*) local optimum / minimum

remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

a bx*

example:
f: [a,b] → , global solution at x*

(ε > 0)

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
6

Optimization Basics

What makes optimization difficult?

some causes:

• local optima (is it a global optimum or not?)

• constraints (e.g. ill-shaped feasible region)

• non-smoothness / ruggedness (weak causality)

• discontinuities (⇒ nondifferentiability, no gradients)

• lack of knowledge about problem (⇒ black / gray box optimization)

f(x) = a1 x1 + ... + an xn → max! with xi ∈ {0,1}, ai ∈

add constaint g(x) = b1 x1 + ... + bn xn ≤ b
⇒ xi* = 1 iff ai > 0
⇒ NP-hard

add capacity constraint to TSP ⇒ CVRP ⇒ even harder

strong causality needed!

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
7

Optimization Basics

When using which optimization method?

mathematical algorithms

• problem explicitly specified

• problem-specific solver available

• problem well understood

• ressources for designing
algorithm affordable

• solution with proven quality
required

⇒ don‘t apply EAs

randomized search heuristics

• problem given by black / gray box

• no problem-specific solver available

• problem poorly understood

• insufficient ressources for designing
algorithm

• solution with satisfactory quality
sufficient

⇒ EAs worth a try

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
8

Evolutionary Algorithm Basics

idea: using biological evolution as metaphor and as pool of inspiration

⇒ interpretation of biological evolution as iterative method of improvement

feasible solution x ∈ X = S1 x ... x Sn = chromosome of individual

multiset of feasible solutions = population: multiset of individuals

objective function f: X → = fitness function

often: X = n, X = n = {0,1}n, X = n = { π : π is permutation of {1,2,...,n} }

also : combinations like X = n x p x q or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
9

Evolutionary Algorithm Basics

initialize population

evaluation

parent selection

variation (yields offspring)

survival selection (yields new population)

evaluation (of offspring)

stop?

output: best individual found
Y

N

algorithmic
skeleton

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
10

Evolutionary Algorithm Basics

population size = 1, number of offspring = 1, selects best from 1+1 individuals

parent offspring

1. initialize X(0) ∈ n uniformly at random, set t = 0

2. evaluate f(X(t))

3. select parent: Y = X(t)

4. variation: flip each bit of Y independently with probability pm = 1/n

5. evaluate f(Y)

6. selection: if f(Y) ≤ f(X(t)) then X(t+1) = Y else X(t+1) = X(t)

7. if not stopping then t = t+1, continue at (3)

no choice, here

Specific example: (1+1)-EA in n for minimizing some f: n →

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
11

Evolutionary Algorithm Basics

population size = 1, number of offspring = 1, selects best from 1+1 individuals

parent offspring

1. initialize X(0) ∈ C ⊂ n uniformly at random, set t = 0

2. evaluate f(X(t))

3. select parent: Y = X(t)

4. variation = add random vector: Y = Y + Z, e.g. Z ∼ N(0, In)

5. evaluate f(Y)

6. selection: if f(Y) ≤ f(X(t)) then X(t+1) = Y else X(t+1) = X(t)

7. if not stopping then t = t+1, continue at (3)

no choice, here

compact set = closed & bounded

Specific example: (1+1)-EA in n for minimizing some f: n →

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
12

Evolutionary Algorithm Basics

Selection

(a) select parents that generate offspring → selection for reproduction

(b) select individuals that proceed to next generation → selection for survival

necessary requirements:

- selection steps must not favor worse individuals

- one selection step may be neutral (e.g. select uniformly at random)

- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals‘ chromosomes x (→ maintain diversity)

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
13

Evolutionary Algorithm Basics

Selection methods

population P = (x1, x2, ..., xµ) with µ individuals

• uniform / neutral selection
choose index i with probability 1/µ

• fitness-proportional selection
choose index i with probability si =

two approaches:

1. repeatedly select individuals from population with replacement

2. rank individuals somehow and choose those with best ranks (no replacement)

problems: f(x) > 0 for all x ∈ X required ⇒ g(x) = exp(f(x)) > 0

but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
14

Evolutionary Algorithm Basics

Selection methods

population P = (x1, x2, ..., xµ) with µ individuals

• rank-proportional selection
order individuals according to their fitness values
assign ranks
fitness-proportional selection based on ranks

⇒ avoids all problems of fitness-proportional selection
but: best individual has only small selection advantage (can be lost!)

• k-ary tournament selection
draw k individuals uniformly at random (typically with replacement) from P
choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and
probability that best individual does not survive:

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
15

Evolutionary Algorithm Basics

Selection methods without replacement

population P = (x1, x2, ..., xµ) with µ parents and

population Q = (y1, y2, ..., yλ) with λ offspring

• (µ, λ)-selection or truncation selection on offspring or comma-selection
rank λ offspring according to their fitness
select µ offspring with best ranks

⇒ best individual may get lost, λ ≥ µ required

• (µ+λ)-selection or truncation selection on parents + offspring or plus-selection
merge λ offspring and µ parents
rank them according to their fitness
select µ individuals with best ranks

⇒ best individual survives for sure

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
16

Evolutionary Algorithm Basics

Selection methods: Elitism

- Intrinsic elitism: method selects from parent and offspring,
best survives with probability 1

- Forced elitism: if best individual has not survived then re-injection into population,
i.e., replace worst selected individual by previously best parent

method P{ select best } from parents & offspring intrinsic elitism
neutral < 1 no no
fitness proportionate < 1 no no
rank proportionate < 1 no no
k-ary tournament < 1 no no
(µ + λ) = 1 yes yes
(µ , λ) = 1 no no

Elitist selection: best parent is not replaced by worse individual.

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
17

Evolutionary Algorithm Basics

Variation operators: depend on representation

mutation → alters a single individual

recombination → creates single offspring from two or more parents

may be applied

● exclusively (either recombination or mutation) chosen in advance

● exclusively (either recombination or mutation) in probabilistic manner

● sequentially (typically, recombination before mutation); for each offspring

● sequentially (typically, recombination before mutation) with some probability

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
18

Evolutionary Algorithm Basics

● Mutation

Individuals ∈ { 0, 1 }n

a) local → choose index k ∈ { 1, …, n } uniformly at random,
flip bit k, i.e., xk = 1 – xk

b) global → for each index k ∈ { 1, …, n }: flip bit k with probability pm ∈ (0,1)

c) “nonlocal“ → choose K indices at random and flip bits with these indices

d) inversion → choose start index ks and end index ke at random
invert order of bits between start and end index

1
0
0
1
1

1
1
0
1
1a)

k=2
0
0
1
0
1b)

1
1
0
0
1

ks

ke
d)

0
0
0
0
1c)

K=2

→

→

Variation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
19

Evolutionary Algorithm Basics

● Recombination (two parents)

a) 1-point crossover → draw cut-point k ∈ {1,…,n-1} uniformly at random;
choose first k bits from 1st parent,
choose last n-k bits from 2nd parent

b) K-point crossover → draw K distinct cut-points uniformly at random;
choose bits 1 to k1 from 1st parent,
choose bits k1+1 to k2 from 2nd parent,
choose bits k2+1 to k3 from 1st parent, and so forth …

c) uniform crossover → for each index i: choose bit i with equal probability
from 1st or 2nd parent

1
0
0
1

0
1
1
1

1
1
1
1a)

⇒

1
0
0
1

0
1
1
1

0
0
0
1c)

⇒

1
0
0
1

0
1
1
1

1
1
0
1b)

⇒

Individuals ∈ { 0, 1 }nVariation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
20

Evolutionary Algorithm Basics

● Recombination (multiparent: ρ = #parents)

b) gene pool crossover (ρ > 2)

Individuals ∈ { 0, 1 }n

a) diagonal crossover (2 < ρ < n)

AAAAAAAAAA
BBBBBBBBBB
CCCCCCCCCC
DDDDDDDDDD

→ choose ρ – 1 distinct cut points, select chunks from diagonals
ABBBCCDDDD
BCCCDDAAAA
CDDDAABBBB
DAAABBCCCC

can generate ρ offspring;
otherwise choose initial chunk
at random for single offspring

→ for each gene: choose donating parent uniformly at random

Variation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
21

Evolutionary Algorithm Basics

● Mutation

a) local → 2-swap / 1-translocation

b) global → draw number K of 2-swaps, apply 2-swaps K times

5 3 2 4 1

5 4 2 3 1

5 3 2 4 1

5 2 4 3 1

K is positive random variable;
its distribution may be uniform, binomial, geometrical, …;
E[K] and V[K] may control mutation strength

expectation variance

Individuals ∈ X = π(1, …, n) Variation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
22

Evolutionary Algorithm Basics

● Recombination (two parents)

Individuals ∈ X = π(1, …, n)

b) partially mapped crossover (PMX) [a version of]

- select two indices k1 and k2 with k1 ≤ k2 uniformly at random
- copy genes k1 to k2 from 1st parent to offspring (keep positions)
- copy all genes not already contained in offspring from 2nd parent

(keep positions)
- from left to right: fill in remaining genes from 2nd parent

a) order-based crossover (OBX)
- select two indices k1 and k2 with k1 ≤ k2 uniformly at random
- copy genes k1 to k2 from 1st parent to offspring (keep positions)
- copy genes from left (pos. 1) to right (pos. n) of 2nd parent,

insert after pos. k2 in offspring (skip values already contained)

x x x 7 1 6 x

5 3 2 7 1 6 4

2 3 5 7 1 6 4
6 4 5 3 7 2 1

2 3 5 7 1 6 4
6 4 5 3 7 2 1

x x x 7 1 6 x

x 4 5 7 1 6 x

3 4 5 7 1 6 2

Variation in n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
23

Evolutionary Algorithm Basics

● Recombination (two parents)

Individuals ∈ X = π(1, …, n)

c) partially mapped crossover (PMX) [Grefenstette et al. 1985]

→ consider array as ring!

- given: 2 permutations a and b of length n
- select 2 indices k1 and k2 uniformly at random
- copy b to c
- procedure =

6 4 5 3 7 2 1

6 4 5 7 3 2 1

2 3 5 7 1 6 4
6 4 5 3 7 2 1

Variation in n

i = k1
repeat

j = findIndex(a[i], c)
swap(c[i], c[j])
i = (i + 1) mod n

until i == k2

6 4 5 7 1 2 3

2 4 5 7 1 6 3

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
24

Evolutionary Algorithm Basics

● Mutation

a) local → Z with bounded support Definition
Let fZ: n→ + be p.d.f. of r.v. Z.
The set { x ∈ n : fZ(x) > 0 } is
termed the support of Z.

additive: Y = X + Z (Z: n-dimensional random vector)

offspring = parent + mutation

x
0

fZ

0

b) nonlocal → Z with unbounded support
fZ

x
0

0

most frequently used!

Variation in n Individuals X ∈ n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
25

Evolutionary Algorithm Basics

● Recombination (two parents)

b) intermediate

c) intermediate (per dimension)

d) discrete

e) simulated binary crossover (SBX)

→ for each dimension with probability pc draw from:

Variation in n Individuals X ∈ n

a) all crossover variants adapted from n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
26

Evolutionary Algorithm Basics

● Recombination (multiparent), ρ ≥ 3 parents

a) intermediate where and

(all points in convex hull)

b) intermediate (per dimension)

Variation in n Individuals X ∈ n

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
27

Evolutionary Algorithm Basics

Proof:

■

Theorem
Let f: n → be a strictly quasiconvex function. If f(x) = f(y) for some x ≠ y then
every offspring generated by intermediate recombination is better than its parents.

Lecture 06

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
28

Evolutionary Algorithm Basics

Proof:

■

Theorem
Let f: n → be a differentiable function and f(x) < f(y) for some x ≠ y.
If (y – x)‘ ∇f(x) < 0 then there is a positive probability that an offspring
generated by intermediate recombination is better than both parents.

