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Plan for Today

● Fuzzy Clustering
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Cluster Formation  and Analysis

Introductory Example: Textile Industry

→ production of T-shirts (for men)

best for producer :  one size

best for consumer:  made-to-measure
vs.

⇒ compromize: S, M, L, XL, 2XL

5 sizes

→ OK,  but which lengths for which size?
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idea:

• select, say, 2000 men at random and measure their “body lengths“

• arrange these 2000 men into five disjoint groups

such that

– deviations from mean of group as small as possible

– differences between group means as large as possible

arm‘s length,
collar size,
chest girth, …

in general:

arrange objects into groups / clusters
such that

– elements within a cluster are as homogeneous as possible
– elements across clusters are as heterogeneous as possible

Cluster Formation  and Analysis
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numerical example:  1000 points uniformly sampled in [0,1] x [0,1]  → form 5 cluster
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Hard / Crisp Clustering

⇒ crisp clustering is just a partitioning of data set { x1, x2, …, xN }, i.e.,

{ x1, x2, …, xN } and

where is Cluster      and denotes the number of clusters.

Constraint:  hence

given data points x1, x2, …, xN

objective: group data points into cluster
such that
- points within cluster are as homogeneous as possible
- points across clusters are as heterogeneous as possible
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Hard / Crisp Clustering

Complexity:    How many choices to assign N objects into clusters?

more precisely:
→ objects are distinguishable / labeled
→ clusters are nondistinguishable / unlabeled and nonempty

⇒ Stirling number of 2nd kind

⇒ enumeration hopeless!      ⇒ iterative improvement procedure required!
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Hard / Crisp Clustering

idea:  define objective function

that measures compactness of clusters and quality of partition

→  elements in cluster Cj should be as homogeneous as possible!

→  sum of squared distances to unknown center y should be as small as possible

→

(Euclidean norm)
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Hard / Crisp Clustering

→  elements in each cluster Cj should be as homogeneous as possible!

→

Definition

Theorem
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Crisp K-Means Clustering
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From Crisp to Fuzzy Clustering

objective for crisp clustering:

→ rewrite objective:

objective for fuzzy clustering:

expresses membership
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Fuzzy K-Means Clustering

where

subject to
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Fuzzy K-Means Clustering

two questions:

ad a)

⇔ ⇔ → weighted mean!
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Fuzzy K-Means Clustering

ad b)

⇔

apply Lagrange multiplier method:

⇒
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Fuzzy K-Means Clustering

after insertion:

problems:
- choice of K
calculate quality measure
for each #cluster; 
then choose best

- choice of m
try some values; 
typical: m=2;
use interval → fuzzy type-2

Lecture 5

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
16

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
16

Example: Special Case |Ji| > 1

uij = 1 / |Ji|  for j ∈ Ji appears plausible

but: different values algorithmically better
→ cluster centers more likely to separate again (→ tiny randomization?)

black dot is center of

- red cluster

- blue cluster

- yellow cluster

in case of equal weights
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Graphical Representation of Fuzzy Cluster

n = 2

idea: plot data points in 2-D, draw isolines with degree of membership

example: 

requested: 3 cluster

red bullet = cluster center
dashed lines = isolines

observations:
- red and blue cluster overlap
- purple cluster almost isolated
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Graphical Representation of Fuzzy Cluster

n > 2

idea: reduction of data dimension from n to 2

2 options:
first reduce dimension of data, then clustering in 2-D

first clustering in n-D, then reduce dimension of cluster data

→ several methods available: 
principal component analysis (PCA), multi-dimensional scaling (MDS),
singular value decomposition (SVD), spectral embedding, ...

finally, apply method developed for n = 2

Lecture 5

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
19

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
19

Measures for Cluster Quality

• Partition Coefficient

→ crisp partition

→ entirely fuzzy

• Partition Entropy

→ entirely fuzzy

→ crisp partition

( “larger is better“ )

( “smaller is better“ )
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Measures for Cluster Quality

Finding an appropriate number of clusters

Possible approach: (mc = max. number of clusters)

set score s* to worst possible value
for c = 2 to mc

apply FCM with c clusters (yields membership matrix U)
determine quality of clustering from U (yields score s)
if s better than s* then

s* = s; c* = c
endif

endfor
output c*

Many more methods for assessing quality of clustering available: 
Hong-Yu Wang, Jie-Sheng Wang, Guan Wang: A survey of fuzzy clustering validity evaluation methods, 
Information Sciences 618:270-297, 2022.
https://doi.org/10.1016/j.ins.2022.11.010
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Beyond the Euclidean Distance

So far, the distance measure was defined via the p-norm with p = 2 (Euclidean norm)

In principle, every value of p with 1 < p < ∞ can be used with this approach.

⇒ for given centers the expression for the memberships is unchanged

But even for given memberships there is no explicit expression for the centers.

⇒ must solve K minimization problems with n variables numerically
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Beyond the Euclidean Distance

There exist algorithms for p = 1 and p = ∞
with explicit expressions for centers and memberships.

same distance for p = 1, 2, ∞

L. Bobrowski and J. C. Bezdek:
c-Means clustering with the L1 and L∞ norms,
IEEE Transactions on Systems, Man, and Cybernetics 21(3):545-554, 1991.
DOI: 10.1109/21.97475

Mahalanobis distance

⇒ leads to elliptical shape of cluster

matrix M not fixed but adapted from given data → each cluster has own matrix
⇒ Gustafson-Kessel fuzzy cluster algorithm (1979)
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Beyond Spherical and Elliptical Compactness

Fuzzy c-Shells Algorithm

- every cluster k = (v, r) is characterized by center v of shell and radius r 

- must define an appropriate distance function

[ R.N. Davé 1990 ]

problem: shell center not given as explicit expression; 
must solve a set of nonlinear equations

shell center and memberships determined by explicit expressions;
but points outside the shells punished harder → results different

[ Krishnapuram et al. 1991 ]


