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Plan for Today

● Approximate Reasoning

● Fuzzy Control



Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
3

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
3

Approximative Reasoning

So far:

● p: IF X is A THEN Y is B

→ R(x, y) = Imp( A(x), B(y) ) rule as relation; fuzzy implication

● rule: IF X is A THEN Y is B
fact: X is A‘
conclusion: Y is B‘

→ B‘(y) = supx∈X t( A‘(x), R(x, y) ) composition rule of inference

Thus:

● B‘(y) = supx∈X t( A‘(x), Imp( A(x), B(y) ) )

given : fuzzy rule

input : fuzzy set A‘

output : fuzzy set B‘



Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
4

x ≠ x0

B‘(y) =            supx∈X t( A‘(x), Imp( A(x), B(y) ) )

sup t( 0, Imp( A(x), B(y) ) )

=

t( 1, Imp( A(x0), B(y) ) )

for x ≠ x0

for x = x0

A‘(x) =    
1 for x = x0

0 otherwise
crisp input!

for x ≠ x0 since t(0, a) = 0

for x = x0 since t(a, 1) = a   [A1]

0

=

Imp( A(x0), B(y) ) 

Approximative Reasoning

special case:
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Lemma:

a) t(a, 1) = a

b) t(a, b) ≤ min { a, b }

c) t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for b ≤ 1, that t(a, b) ≤ t(a, 1) = a.
Commutativity (axiom 3) and monotonicity lead in case of a ≤ 1 to 
t(a, b) = t(b, a) ≤ t(b, 1) = b. Thus, t(a, b) is less than or 
equal to a as well as b, which in turn implies t(a, b) ≤ min{ a, b }.

ad c) From b) follows 0 ≤ t(0, a) ≤ min { 0, a } = 0 and therefore t(0, a) = 0.         ■

by a)

Approximative Reasoning
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Multiple rules:

IF X is A1, THEN Y is B1
IF X is A2, THEN Y is B2
IF X is A3, THEN Y is B3
…
IF X is An, THEN Y is Bn
X is A‘

Y is B‘

→ R1(x, y) = Imp1( A1(x), B1(y) )
→ R2(x, y) = Imp2( A2(x), B2(y) )
→ R3(x, y) = Imp3( A3(x), B3(y) )
…
→ Rn(x, y) = Impn( An(x), Bn(y) )

Multiple rules for fuzzy input:   A‘(x) is given

B1‘(y) = supx∈X t( A‘(x), R1(x, y) )
…
Bn‘(y) = supx∈X t( A‘(x), Rn(x, y) )

aggregation of rules or
local inferences necessary!

aggregate! ⇒ B‘(y) = aggr{ B1‘(y), …, Bn‘(y) },  where aggr = min
max

Approximative Reasoning

Why?
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Approximative Reasoning

Axioms of Aggregation
[cf. Fung/Fu 1975; quoted from W. Cholewa: Fuzzy Sets & Systems 17:249-258, 1985] 

Let A, A1, A2, ... be fuzzy sets over X. The aggregate is denoted by A1⊕ A2. 

(A1)   ∃ function ○: [0,1] x [0,1] → [0,1] with (A1 ⊕ A2)(x) = A1(x) ○ A2(x) ∀x ∈ X 

(A2)   ∀A:  A⊕ A = A

(A3)   ∀ i, j :  Ai ⊕ Aj = Aj ⊕ Ai 

(A5)   ∀ i, j, k : Ai ⊕ (Aj ⊕ Ak) = (Ai ⊕ Aj) ⊕ Ak

(A4)   For m ≥ 3:  A1 ⊕ ... ⊕ Am = (A1 ⊕ ...⊕ Am-1) ⊕ Am

(A6)   Let A1 = A⊕ A3 and A2 = A⊕ A4  . If A3(x) > A4(x) then A1(x) > A2(x) ∀x ∈ X

Theorem
If Axioms (A1) – (A6) hold, then only three types of aggregation are possible:
1. a ○ b = min(a, b)
2. a ○ b = max(a, b)
3. a ○ b = min(a, b) for a, b ≥ θ; = max(a, b) for a, b ≤ θ; = θ otherwise (0 < θ < 1) 
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FITA: “First inference, then aggregate!“

1. Each rule of the form IF X is Ak THEN Y is Bk must be transformed by
an appropriate fuzzy implication Impk(·,·) to a relation Rk :
Rk(x, y) = Impk( Ak(x), Bk(y) ).

2. Determine Bk‘(y) = Rk(x, y) ◦ A‘(x) for all k = 1, …, n (local inference).

3. Aggregate to B‘(y) = β( B1‘(y), …, Bn‘(y) ).

FATI: “First aggregate, then inference!“

1. Each rule of the form IF X ist Ak THEN Y ist Bk must be transformed by
an appropriate fuzzy implication Impk(·, ·) to a relation Rk :
Rk(x, y) = Impk( Ak(x), Bk(y) ).

2. Aggregate R1, …, Rn to a superrelation with aggregating function α(·):
R(x, y) = α( R1(x, y), …, Rn(x, y) ).

3. Determine B‘(y) = R(x, y) ◦ A‘(x) w.r.t. superrelation (inference).

Approximative Reasoning
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2. Equivalence of FITA and FATI ?

FITA: B‘(y) =  β( B1‘(y), …, Bn‘(y) )

=  β( R1(x, y) ◦ A‘(x), …, Rn(x, y) ◦ A‘(x) )

FATI: B‘(y) =  R(x, y) ◦ A‘(x) 

=  α( R1(x, y), …, Rn(x, y) ) ◦ A‘(x)

1. Which principle is better? FITA or FATI?

Approximative Reasoning

→ general case: no further analysis without simplifying assumptions …
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special case:

A‘(x) =    
1 for x = x0

0 otherwise
crisp input!

On the equivalence of FITA and FATI:

FITA: B‘(y) =  β( B1‘(y), …, Bn‘(y) )

=  β( Imp1(A1(x0), B1(y) ), …, Impn(An(x0), Bn(y) ) )

FATI: B‘(y) =  R(x, y) ◦ A‘(x)

=  supx∈X t( A‘(x), R(x, y) ) (from now: special case)

=  R(x0, y)

=  α( Imp1( A1(x0), B1(y) ), …, Impn( An(x0), Bn(y) ) )

FATI = FITA if sup-t-composition with same t-norm, α(·) = β(·), same Impi(), and ... 

Approximative Reasoning
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● AND-connected premises 

IF X1 = A11 AND X2 = A12 AND … AND Xm = A1m THEN Y = B1
…
IF Xn = An1 AND X2 = An2 AND … AND Xm = Anm THEN Y = Bn

reduce to single premise for each rule k:

Ak(x1,…, xm) = min { Ak1(x1), Ak2(x2), …, Akm(xm) } or in general: t-norm

● OR-connected premises

IF X1 = A11 OR X2 = A12 OR … OR Xm = A1m THEN Y = B1
…
IF Xn = An1 OR X2 = An2 OR … OR Xm = Anm THEN Y = Bn

reduce to single premise for each rule k:

Ak(x1,…, xm) = max { Ak1(x1), Ak2(x2), …, Akm(xm) } or in general: s-norm

Approximative Reasoning
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important:

● if rules of the form IF X is A THEN Y is B interpreted as logical implication

⇒ R(x, y) = Imp( A(x), B(y) ) makes sense

● we obtain:  B‘(y) = supx∈X t( A‘(x), R(x, y) )

interpretation of output set B‘(y):

● B‘k(y) is the set of values that are possible under the particular rule k

● each rule leads to a different restriction of the values that are possible

● must determine set of values that are possible for all rules

⇒ resulting fuzzy sets B‘k(y) obtained from single rules must be mutually intersected!

⇒ aggregation via    B‘(y) = min { B1‘(y), …, Bn‘(y) }

Approximative Reasoning

R1

R2

B1

B2

B

A
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important:

● if rules of the form IF X is A THEN Y is B are not interpreted as logical
implications, then the function Fct(•) in

R(x, y) = Fct( A(x), B(y) )

can be chosen as required for desired interpretation.

● frequent choice (especially in fuzzy control):

- R(x, y) = min { A(x), B(y) } Mamdani – “implication“

- R(x, y) = A(x) · B(y) Larsen – “implication“

⇒ of course, they are no implications but specific t-norms!

⇒ thus, if relation R(x, y) is given, 
then the composition rule of inference

B‘(y) = A‘(x) ◦ R(x, y) = supx∈X min { A’(x), R(x, y) }

still can lead to a conclusion via fuzzy logic.

Approximative Reasoning
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Approximative Reasoning

interpretation of output set B‘(y):

● B‘k(y) is the set of values that are possible under the particular rule k

● technical system must work for all values that are possible

● each rule may extend the set of the values that are possible

⇒ resulting fuzzy sets B‘k(y) obtained from single rules must be mutually united!

⇒ aggregation via    B‘(y) = max { B1‘(y), …, Bn‘(y) }

R1

R2

B1

B2

B

A
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example: [JM96, S. 244ff.]

industrial drill machine → control of cooling supply

modelling

linguistic variable : rotation speed

linguistic terms : very low, low, medium, high, very high

ground set : X with 0 ≤ x ≤ 18000 [rpm]

1000 90005000 13000 17000 rotation 
speed

vl l m h vh
1

Approximative Reasoning
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example: (continued)

modelling

linguistic variable : cooling quantity

linguistic terms : very small, small, normal, much, very much

ground set : Y with 0 ≤ y ≤ 18 [liter / time unit]

1 95 13 17 cooling 
quantity

vs s n m vm
1

Approximative Reasoning

industrial drill machine → control of cooling supply
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rule base

IF rotation speed IS very low THEN cooling quantity IS very small

low

medium

high

very high

small

normal

much 

very much

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

sets Svl, Sl, Sm, Sh, Svh sets Cvs, Cs, Cn, Cm, Cvm

“rotation speed” “cooling quantity”



Lecture 04

1. input: crisp value x0 = 10 000 min-1 (not a fuzzy set!)

→ fuzzyfication = determine membership for each fuzzy set over X

→ yields  S’ = (0, 0, ¾, ¼, 0) via x  ( Svl(x0), Sl(x0), Sm(x0), Sh(x0), Svh(x0) )

2. FITA: local inference ⇒ note: Imp(0,a) = 1      (axiom 3)

Svl: C’vs(y) = Imp( 0 , Cvs(y) )

Sl: C’s(y)   = Imp(0, Cs(y) )

Sm: C’n(y) = Imp(¾, Cn(y) )

Sh: C’m(y)  = Imp(¼ , Cm(y) )

Svh: C’vm(y) = Imp( 0 , Cvm(y) )

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

Must we replace
logical Imp() by

technical relation?
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example: (continued)

industrial drill machine → control of cooling supply

Approximative Reasoning

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
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in case of control task typically no logic-based interpretation:

→ max-aggregation and

→ relation R(x,y) not interpreted as implication.

often: R(x,y) = min(A(x), B(y))          „Mamdani controller“

2. FITA: local inference
Svl: C’vs(y) = min( 0, Cvs(y) ) = 0

Sl: C’s(y)    = min( 0, Cs(y) ) = 0

Sm: C’n(y) = min(¾, Cn(y) ) ≥ 0 

Sh: C’m(y)   = min(¼, Cm(y) ) ≥ 0

Svh: C’vm(y) = min( 0, Cvm(y) ) = 0

⇒ since min(0,a) = 0 and max-aggr. 
we only need to consider Cn and Cm
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→ graphical illustration

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

3. aggregation:
C’(y) =  aggr { C’n(y), C’m(y) } = max { min( ¾, Cn(y) ), min( ¼, Cm(y) ) }

Remark:
This approach can be applied with every t-norm and max-aggregation
⇒ C’(y) = max { t( ¾, Cn(y) ), t( ¼, Cm(y) ) }



Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
21

C‘(y) = max { min { ¾, Cn(y) }, min { ¼, Cm(y) } }, x0 = 10 000 [rpm]

1000 90005000 13000 17000

rotation speed

vl l m h vh
1

1 95 13 17

cooling quantity

vs s n m sm
1

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply
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Fuzzy Control

open and closed loop control:
affect the dynamical behavior of a system 
in a desired manner

● open loop control
control is aware of reference values and has a model of the system
⇒ control values can be adjusted,

such that process value of system is equal to reference value

problem: noise! ⇒ deviation from reference value not detected

● closed loop control
now: detection of deviations from reference value possible
(by means of measurements / sensors)
and new control values can take into account the amount of deviation
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open loop control

system
process

control

w u y

process 
value

reference 
value

assumption: undisturbed operation  ⇒ process value = reference value

Fuzzy Control
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closed loop control

system
process

control

w u

d

y

noise

process
value

control deviation = reference value – process value

Fuzzy Control

reference 
value
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required:

model of system / process

→ as differential equations or difference equations (DEs)

→ well developed theory available

so, why fuzzy control?
● if there exists no process model in form of DEs etc.

(operator/human being has realized control manually)

● if process with high-dimensional nonlinearities → no classic methods available

● if control goals are vaguely formulated (e.g. „soft“ changing gears in cars)

Fuzzy Control
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fuzzy description of control behavior

note: fact A‘ is not a fuzzy set but a crisp input

→ actually, it is the current process value

but crisp control value required for the process / system

→ defuzzification (= “condense” fuzzy set to crisp value)

fuzzy controller executes inference step

→ yields fuzzy output set B‘(y)

IF X is A1, THEN Y is B1
IF X is A2, THEN Y is B2
IF X is A3, THEN Y is B3
…
IF X is An, THEN Y is Bn
X is A‘

Y is B‘

similar to approximative reasoning

Fuzzy Control
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defuzzification
● maximum method

- only active rule with largest activation level is taken into account

→ suitable for pattern recognition / classification

→ decision for a single alternative among finitely many alternatives

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: discontinuous curve of output values (leaps)

Def: rule k active ⇔ Ak(x0) > 0

0,5

t

0,5

B‘(y)

0,5

B‘(y)

0,5

B‘(y)

Fuzzy Control
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defuzzification
● maximum mean value method

- all active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y ∈ Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

useful solution?  →

Fuzzy Control
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defuzzification
● center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y ∈ Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

?0,5

B‘(y)

?

Fuzzy Control
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defuzzification
● Center of Gravity (COG)

- all active rules are taken into account

→ but numerically expensive …

→ borders cannot appear in output ( ∃ work-around )

- if only single active rule: independent from activation level

- continuous curve for output values

…only valid for HW solution, today!

Fuzzy Control
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Excursion: COG

triangle:

y1 y2 y3

trapezoid:

y1y2 y4y3

y

B‘(y)

1

pendant in 
probability theory:
expectation value

1 3,77...

Fuzzy Control
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y

z=B‘(y)

1

y1 y2 y3 y4 y5 y6 y7

assumption: fuzzy membership functions piecewise linear

output set B‘(y) represented by sequence of points (y1, z1), (y2, z2), …, (yn, zn) 

⇒ area under B‘(y) and weighted area can be determined additively piece by piece

⇒ linear equation z = m y + b   → insert (yi, zi) and (yi+1,zi+1)

⇒ yields m and b for each of the n-1 linear sections

⇒

⇒

Fuzzy Control
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Defuzzification
● Center of Area (COA)

• developed as an approximation of COG

• let ŷk be the COGs of the output sets B’k(y):

Fuzzy Control

how to:
assume that fuzzy sets Ak(x) and Bk(x) are triangles or trapezoids
let x0 be the crisp input value
for each fuzzy rule “IF Ak is X THEN Bk is Y“

determine B‘k(y) = R( Ak(x0), Bk(y) ), where R(.,.) is the relation
find ŷk as center of gravity of B‘k(y)
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Fuzzy Control

Putting all together:

x0
crisp input

defuzzified
output

→ map controller (in german: Kennfeldregler)


	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34

