technische universitat
dortmund

Computational Intelligence

Winter Term 2025/26

Prof. Dr. Gunter Rudolph
Computational Intelligence
Fakultat fur Informatik

TU Dortmund

Plan for Today

e Approximate Reasoning

e Fuzzy Control

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2025/26
2

Approximative Reasoning

So far:
e p:IF XisATHEN Yis B

— R(x,'y) = Imp(A(x), B(y) )

e rule: IF XisATHEN Yis B
fact: Xis A
conclusion: Yis B¢

— B'(y) = sup,x t(A(x), R(x, y) )

Thus:
e B(y) = sup,x t(A'(x), Imp(A(x), B(y) ))
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rule as relation; fuzzy implication

composition rule of inference

given  :fuzzy rule
input : fuzzy set A’

output : fuzzy set B
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Approximative Reasoning

special case:

crisp input!

1 forx=x,
A ) - 0 otherwise
Bly) = sup,x t(A'(x), Imp(A(x), B(y) ) )

sup t( 0, Imp(A(x), B(y) ))  for x # x,

X # Xg

t(1, Imp(A(xo), B(y) )) for x = x,

Imp(A(Xo), B(y) )

technische universitat
dortmund

for x # X, since t(0,a)=0

for x = x, since t(a, 1) =a 1
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Approximative Reasoning

Lemma:

a) t(a,1)=a

b) t(a,b)<min{a,b}

c) t0,a)=0

Proof: by a)
ad a) Identical to axiom 1 of t-norms. /

ad b) From monotonicity (axiom 2) follows for b < 1, that t(a, b) < t(a, 1) = a.
Commutativity (axiom 3) and monotonicity lead in case ofa <1 to
t(a, b) = t(b, a) = t(b, 1) = b. Thus, t(a, b) is less than or
equal to a as well as b, which in turn implies t(a, b) < min{ a, b }.

ad c) From b) follows 0 < t(0, a) < min {0, a } = 0 and therefore t(0, a) = 0. n
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Approximative Reasoning

Multiple rules:

IF X isA,, THEN Y is B,
IF X is A,, THEN Y is B,
IF X is A;, THEN Y is B,

— Ry(x,'y) = Imp;(A4(x),

B,(y))
— Ry(X, ) = Imp,( Ax(x), By(y) )
— Ry(X, y) = Imp,( Ag(x), Bs(y) )

IF XisA,, THEN Y is B, — Ry(x, y) = Imp,(Ay(x), Bn(y) )

Xis A’
Y is B*

Multiple rules for fuzzy input: A‘(x) is given
By'(y) = supyex t(A'(X), Ry(X, ¥) )

B,A(Y) = SUp,x t(AX), Ry(x, y))

aggregation of rules or
local inferences necessary!

oy — . ‘ _ | min
aggregate! = B(y) = aggr{ B y). . B,(y) ), where aggz = | M “=( Why?

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2025/26

6

Approximative Reasoning

Axioms of Aggregation
[cf. Fung/Fu 1975; quoted from W. Cholewa: Fuzzy Sets & Systems 17:249-258, 1985]

Let A, A, A,, ... be fuzzy sets over X. The aggregate is denoted by A,;® A,.

(A1) 3 function o: [0,1] x [0,1] — [0,1] with (A; ® A,)(X) = A;(X) 0 Ay(x) Vxe X
(A2) VA: A@A=A

(A3) Vi j: AGA=ABA

(Ad) Form=3: A/®...0A, = (A®..DA, ) DA,

(AS) Vi j,k:A® A BA)=(ADA) DA

(AB) LetA; =A@ Azand A, =ADA, .IfA;(X)>A,(x) then Aj(x) >Ay(X) VxeX
Theorem

If Axioms (A1) — (A6) hold, then only three types of aggregation are possible:
1. aob=min(a, b)
2. aob=max(a, b)

3. aob=min(a, b) for a, b > 0; = max(a, b) for a, b < 8; = 0 otherwise (0<6<1)
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Approximative Reasoning

FITA: “First inference, then aggregate!”

1. Each rule of the form IF X'is A, THEN Y is B, must be transformed by
an appropriate fuzzy implication Imp,(+,-) to a relation R, :

Ri(x, y) = Impy( A(x), Bi(y) ).
2. Determine B,(y) = Ri(x, y) e A'(x) for allk = 1, ..., n (local inference).

3. Aggregate to B(y) = B( B4‘(y), ..., By(Y) ).

FATI: “First agagregate, then inference!”

1. Each rule of the form IF X ist A, THEN Y ist B, must be transformed by
an appropriate fuzzy implication Imp,(-, -) to a relation R, :

Ri(X, y) = Imp,( A(x), Bi(y) )-

2. Aggregate Ry, ..., R, to a superrelation with aggregating function a(-):
R(x, y) = a( Ry(x, ¥), ..., Ry(x, y) ).

3. Determine B'(y) = R(x, y) ° A‘(x) w.r.t. superrelation (inference).
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Approximative Reasoning

1. Which principle is better? FITA or FATI?

2. Equivalence of FITA and FATI ?

FITA: B(y) = B(By(y), .-, By(¥))
= B( R'I(X’ y) OA‘(X)’ T Rn(x’ Y) OA‘(X) )
FATI: B'(y) = R(x,y)°A(x)

G.( R1(X1 y)! e Rn(xv y) ) ° A‘(X)

— general case: no further analysis without simplifying assumptions ...
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Approximative Reasoning

special case:
Ax) =

1 forx=xq

crisp input!

0 otherwise

On the equivalence of FITA and FATI:

FITA: B'(y) = B(B(y), ..., By'(Y))
= B(Impy(A;(Xg), B1(Y) ), ..., ImpL(A,(Xg), Ba(y) ))
FATI: B'(y) = R(x,y)°A(X)

= sup,.x t(A(x), R(x, y)) (from now: special case)
R(Xo, ¥)

(X( Imp1(A1(XO)’ B'](y) )1 T Impn( An(XO)v Bn(y) ) )

FATI = FITA if sup-t-composition with same t-norm, a(-) = B(-), same Imp,(), and ... —
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Approximative Reasoning

e AND-connected premises
IF X, =A;; AND X, =A;, AND ... AND X, =A,, THEN Y = B,

IF X,=A,;AND X, =A,AND ... AND X, =A,, THEN Y =B,
reduce to single premise for each rule k:
A(Xqyee s X) = MIN { Ay (X4)s Aa(Xa), - vy Agn(Xim) 3 or in general: t-norm

e OR-connected premises
IFX;=A;4ORX,=A;,0R ... ORX,=A,, THENY =B,

IFX,=A,;ORX,=A,,0OR...ORX,=A,, THENY =B,
reduce to single premise for each rule k:

AXqs- s X)) = Max { Ay (X1), Aa(Xa), - Agn(Xim) } or in general: s-norm
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Approximative Reasoning

important:

e if rules of the form IF X is A THEN Y is B interpreted as logical implication
= R(x, y) = Imp( A(x), B(y) ) makes sense

e we obtain: B'(y) = sup,.x t( A'(x), R(x, y))

interpretation of output set B'(y):

e B',(y) is the set of values that are possible under the particular rule k
e each rule leads to a different restriction of the values that are possible
e must determine set of values that are possible for all rules

= resulting fuzzy sets B, (y) obtained from single rules must be mutually intersected!

= aggregation via  B(y) = min { B,(y), ..., B,'(Y) } . R,
2
! 7
BW
——
A
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Approximative Reasoning

important:

e if rules of the form IF X is ATHEN Y is B are not interpreted as logical
implications, then the function Fct(e) in

R(x, y) = Fct(A(x), B(y) )
can be chosen as required for desired interpretation.
e frequent choice (especially in fuzzy control):
- R(x, y) = min { A(x), B(y) }
- R(x, y) =A(x) - B(y)
= of course, they are no implications but specific t-norms!

Mamdani — “implication®

Larsen — “implication”

= thus, if relation R(x, y) is given,
then the composition rule of inference

| B(y) =A(X) ° R(x, y) = sup,.x min {A(x), R(x,y)} |

still can lead to a conclusion via fuzzy logic.
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Approximative Reasoning

interpretation of output set B‘(y):

e B',(y) is the set of values that are possible under the particular rule k

e technical system must work for all values that are possible

e each rule may extend the set of the values that are possible

= resulting fuzzy sets B (y) obtained from single rules must be mutually united!

= aggregation via B(y) = max { B;'(y), ..., B,'(y) }

R2
B,
R
B /1
B,
—
A
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Approximative Reasoning

example: [JM96, S. 244ff.]

industrial drill machine — control of cooling supply

modelling

linguistic variable : rotation speed
linguistic terms : very low, low, medium, high, very high
ground set : X with 0 < x < 18000 [rpm]

1

1000 5000 9000 13000 17000 rotation

speed
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

modelling
linguistic variable : cooling quantity

linguistic terms : very small, small, normal, much, very much

ground set 2 Y with 0 <y < 18 [liter / time unit]

1
vs s n m vm,

1 5 9 13 17 cooling

quantity
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

rule base

IF rotation speed IS very low THEN cooling quantity IS very small

low
medium
high

very high

T

sets Svl! S|, Sm: Sh! Svh

“rotation speed”
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small
normal
much

very much

T

sets C,q, Cs, C, Cry Cum
“cooling quantity”
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

1.

input: crisp value x, =10 000 min"' (not a fuzzy set!)
— fuzzyfication = determine membership for each fuzzy set over X

— yields S'= (0, 0, %, %, 0) via x - ( S,(Xo). Si(Xo), S(Xo). Sy(Xo). Sun(Xo) )

FITA: local inference

Sui Cls(y) =Imp(0, Cy(y))
S Cly) =1Imp(0, Ci(y))
St Culy) =Imp(%, C(y) )
S Clu(y) =1mp(%s, C(y) )
Sini Cum(y) =1mp(0, C,n(y) )

= note: Imp(0,a)=1  (axiom 3)

Must we replace
logical Imp() by
technical relation?
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

in case of control task typically no logic-based interpretation:

— max-aggregation and

— relation R(x,y) not interpreted as implication.

often: R(x,y) = min(A(x), B(y))

2. FITA: local inference
Syi Clu(y) =min(0, Cy(y))
S Cily) =min(0, Cy(y))
Smi C'a(y) =min(%, C.(y) )
Spi Cluly) =min(%, Ci(y))
Suhi Clum(y) =min(0, Cyr(y) )
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,Mamdani controller®

{ = since min(0,a) = 0 and max-aggr.

we only need to consider C, and C,,
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

3. aggregation:
C(y) = aggr {C',(y). C'n(y) } = max {min( %, C.(y) ), min( %, C.(y) ) }
Remark:

This approach can be applied with every t-norm and max-aggregation
= C'(y) = max {t( %, C,(y) ), t( 74, Ci(y) ) }

— graphical illustration
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Approximative Reasoning

example: (continued)
industrial drill machine — control of cooling supply

C(y) = max { min { %, C.(y) }, min { ¥4, C.,(y) } }, X, = 10 000 [rpm]

1 1
vl 1 m h vh/

;

1000 5000 9000 13000 17000 1 5 9 13 17

rotation speed cooling quantity
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Fuzzy Control

open and closed loop control:

affect the dynamical behavior of a system
in a desired manner

e open loop control

control is aware of reference values and has a model of the system
= control values can be adjusted,
such that process value of system is equal to reference value

problem: noise! = deviation from reference value not detected

¢ closed loop control

now: detection of deviations from reference value possible
(by means of measurements / sensors)
and new control values can take into account the amount of deviation
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Fuzzy Control

open loop control

Q
o)
)
7 ,
%
%

w u y
—_— —_— _—
reference process

value value
control system
process

assumption: undisturbed operation = process value = reference value
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Fuzzy Control

closed loop control

noise
o)
7,
(N , d
L7
%

w u y
—_— —_— B e
reference  — process
value value
control system

process

control deviation = reference value — process value
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Fuzzy Control

required:

model of system / process
— as differential equations or difference equations (DEs)

— well developed theory available

so, why fuzzy control?

e if there exists no process model in form of DEs etc.
(operator/human being has realized control manually)

e if process with high-dimensional nonlinearities — no classic methods available

e if control goals are vaguely formulated (e.g. ,soft“ changing gears in cars)
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Fuzzy Control

fuzzy description of control behavior

IF XisA;, THEN Y is B,
IF XisA,, THEN Y is B,
IF Xiis A;, THEN Y is B,
> similar to approximative reasoning
IFXisA, THENYis B,
Xis A’

Y is B

note: fact A is not a fuzzy set but a crisp input

— actually, it is the current process value

fuzzy controller executes inference step

— yields fuzzy output set B(y)

but crisp control value required for the process / system

— defuzzification (= “condense” fuzzy set to crisp value)

G. Rudolph: Computational Intelligence = Winter Term 2025/26
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Fuzzy Control

defuzzification Def: rule k active < A,(xg) > 0

e maximum method

- only active rule with largest activation level is taken into account

— suitable for pattern recognition / classification

— decision for a single alternative among finitely many alternatives
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: discontinuous curve of output values (leaps)

g = argmax B'(y)
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Fuzzy Control

defuzzification Y*={y e Y: B‘(y) = hgt(B) }

e maximum mean value method

- all active rules with largest activation level are taken into account
— interpolations possible, but need not be useful
— obviously, only useful for neighboring rules with max. activation
- selection independent from activation level of rule (0.05 vs. 0.95)
- if used in control: incontinuous curve of output values (leaps)
1
Y¥]

g:

useful solution? — g
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Fuzzy Control

defuzzification Y*={y e Y: By) = hgt(B‘) }

e center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account
— interpolations possible, but need not be useful
— obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

infY*+supY*

Fuzzy Control

defuzzification
e Center of Gravity (COG)
- all active rules are taken into account
— but numerically expensive ... ...only valid for HW solution, today!
— borders cannot appear in output ( 3 work-around )
- if only single active rule: independent from activation level

- continuous curve for output values

- !
j = g_fy-B(y)dy
B'(y)d
B(y) B(Y). J B'(y) dy
0,5 0,5
]
technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26 technische universitat G. Rudolph: Computational Intelligence = Winter Term 2025/26
dortmund 29 dortmund 30
Fuzzy Control Fuzzy Control
! ‘
__ Jy-B'(y)dy z=B(y) -
Excursion: COG Yy = ; j= Jy - B'(y)dy
I B'(y) dy 1 I'B'(y) dy
BYy) pendant in . . . . .
probability theory: M A y
1 expectation value
assumption: fuzzy membership functions piecewise linear
1% ;77 y output set B(y) represented by sequence of points (y4, z4), (Y2, Z5), ---» (Y Zp)
o = area under B'(y) and weighted area can be determined additively piece by piece
triangle: trapezoid: = linear equation z=my +b — insert (y, z) and (Yi.1,Z1)
g= Y +yr+ys3 G— y2+ 93— y3 — v3 + y3ya — v1y2 = yields m and b for each of the n-1 linear sections
3 3(Wa+tyz—y2—v1) Vit1 m, 2 2 :
= F, = /y (my+b) dy = = (yip1 =97 +b(Wiv1-:) > Gy
i ~ 7
y —
Y1 Y2 Y3 Y2 Y3 Ya Yi+1 m b 2 2 E:
=G = /y y (my+b) dy = E(y?+l_yi3)+§(yi+l_yi ) %: v
technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26 technische universitat G. Rudolph: Computational Intelligence * Winter Term 2025/26
dortmund 31 dortmund 32




Fuzzy Control

Defuzzification
e Center of Area (COA)
« developed as an approximation of COG
* let §, be the COGs of the output sets B’/ (y):

>k Ak (o) - Uk
>k Ag (o)

g:

how to:
assume that fuzzy sets A,(x) and B,(x) are triangles or trapezoids
let x, be the crisp input value
for each fuzzy rule “IF A, is X THEN B, is Y*
determine B',(y) = R( Ac(Xp), Bi(y) ), where R(.,.) is the relation
find y, as center of gravity of B, (y)
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Fuzzy Control

Putting all together:

defuzzified
output
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Xo
crisp input

— map controller (in german: Kennfeldregler)
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