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Plan for Today

● Approximate Reasoning

● Fuzzy Control
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Approximative Reasoning

So far:

● p: IF X is A THEN Y is B

→ R(x, y) = Imp( A(x), B(y) ) rule as relation; fuzzy implication

● rule: IF X is A THEN Y is B
fact: X is A‘
conclusion: Y is B‘

→ B‘(y) = supx∈X t( A‘(x), R(x, y) ) composition rule of inference

Thus:

● B‘(y) = supx∈X t( A‘(x), Imp( A(x), B(y) ) )

given : fuzzy rule

input : fuzzy set A‘

output : fuzzy set B‘
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x ≠ x0

B‘(y) =            supx∈X t( A‘(x), Imp( A(x), B(y) ) )

sup t( 0, Imp( A(x), B(y) ) )

=

t( 1, Imp( A(x0), B(y) ) )

for x ≠ x0

for x = x0

A‘(x) =    
1 for x = x0

0 otherwise
crisp input!

for x ≠ x0 since t(0, a) = 0

for x = x0 since t(a, 1) = a   [A1]

0

=

Imp( A(x0), B(y) ) 

Approximative Reasoning

special case:
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Lemma:

a) t(a, 1) = a

b) t(a, b) ≤ min { a, b }

c) t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for b ≤ 1, that t(a, b) ≤ t(a, 1) = a.
Commutativity (axiom 3) and monotonicity lead in case of a ≤ 1 to 
t(a, b) = t(b, a) ≤ t(b, 1) = b. Thus, t(a, b) is less than or 
equal to a as well as b, which in turn implies t(a, b) ≤ min{ a, b }.

ad c) From b) follows 0 ≤ t(0, a) ≤ min { 0, a } = 0 and therefore t(0, a) = 0.         ■

by a)
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Multiple rules:

IF X is A1, THEN Y is B1
IF X is A2, THEN Y is B2
IF X is A3, THEN Y is B3
…
IF X is An, THEN Y is Bn
X is A‘

Y is B‘

→ R1(x, y) = Imp1( A1(x), B1(y) )
→ R2(x, y) = Imp2( A2(x), B2(y) )
→ R3(x, y) = Imp3( A3(x), B3(y) )
…
→ Rn(x, y) = Impn( An(x), Bn(y) )

Multiple rules for fuzzy input:   A‘(x) is given

B1‘(y) = supx∈X t( A‘(x), R1(x, y) )
…
Bn‘(y) = supx∈X t( A‘(x), Rn(x, y) )

aggregation of rules or
local inferences necessary!

aggregate! ⇒ B‘(y) = aggr{ B1‘(y), …, Bn‘(y) },  where aggr = min
max

Approximative Reasoning

Why?
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Approximative Reasoning

Axioms of Aggregation
[cf. Fung/Fu 1975; quoted from W. Cholewa: Fuzzy Sets & Systems 17:249-258, 1985] 

Let A, A1, A2, ... be fuzzy sets over X. The aggregate is denoted by A1⊕ A2. 

(A1)   ∃ function ○: [0,1] x [0,1] → [0,1] with (A1 ⊕ A2)(x) = A1(x) ○ A2(x) ∀x ∈ X 

(A2)   ∀A:  A⊕ A = A

(A3)   ∀ i, j :  Ai ⊕ Aj = Aj ⊕ Ai 

(A5)   ∀ i, j, k : Ai ⊕ (Aj ⊕ Ak) = (Ai ⊕ Aj) ⊕ Ak

(A4)   For m ≥ 3:  A1 ⊕ ... ⊕ Am = (A1 ⊕ ...⊕ Am-1) ⊕ Am

(A6)   Let A1 = A⊕ A3 and A2 = A⊕ A4  . If A3(x) > A4(x) then A1(x) > A2(x) ∀x ∈ X

Theorem
If Axioms (A1) – (A6) hold, then only three types of aggregation are possible:
1. a ○ b = min(a, b)
2. a ○ b = max(a, b)
3. a ○ b = min(a, b) for a, b ≥ θ; = max(a, b) for a, b ≤ θ; = θ otherwise (0 < θ < 1) 
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FITA: “First inference, then aggregate!“

1. Each rule of the form IF X is Ak THEN Y is Bk must be transformed by
an appropriate fuzzy implication Impk(·,·) to a relation Rk :
Rk(x, y) = Impk( Ak(x), Bk(y) ).

2. Determine Bk‘(y) = Rk(x, y) ◦ A‘(x) for all k = 1, …, n (local inference).

3. Aggregate to B‘(y) = β( B1‘(y), …, Bn‘(y) ).

FATI: “First aggregate, then inference!“

1. Each rule of the form IF X ist Ak THEN Y ist Bk must be transformed by
an appropriate fuzzy implication Impk(·, ·) to a relation Rk :
Rk(x, y) = Impk( Ak(x), Bk(y) ).

2. Aggregate R1, …, Rn to a superrelation with aggregating function α(·):
R(x, y) = α( R1(x, y), …, Rn(x, y) ).

3. Determine B‘(y) = R(x, y) ◦ A‘(x) w.r.t. superrelation (inference).

Approximative Reasoning
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2. Equivalence of FITA and FATI ?

FITA: B‘(y) =  β( B1‘(y), …, Bn‘(y) )

=  β( R1(x, y) ◦ A‘(x), …, Rn(x, y) ◦ A‘(x) )

FATI: B‘(y) =  R(x, y) ◦ A‘(x) 

=  α( R1(x, y), …, Rn(x, y) ) ◦ A‘(x)

1. Which principle is better? FITA or FATI?

Approximative Reasoning

→ general case: no further analysis without simplifying assumptions …
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special case:

A‘(x) =    
1 for x = x0

0 otherwise
crisp input!

On the equivalence of FITA and FATI:

FITA: B‘(y) =  β( B1‘(y), …, Bn‘(y) )

=  β( Imp1(A1(x0), B1(y) ), …, Impn(An(x0), Bn(y) ) )

FATI: B‘(y) =  R(x, y) ◦ A‘(x)

=  supx∈X t( A‘(x), R(x, y) ) (from now: special case)

=  R(x0, y)

=  α( Imp1( A1(x0), B1(y) ), …, Impn( An(x0), Bn(y) ) )

FATI = FITA if sup-t-composition with same t-norm, α(·) = β(·), same Impi(), and ... 

Approximative Reasoning

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
11

● AND-connected premises 

IF X1 = A11 AND X2 = A12 AND … AND Xm = A1m THEN Y = B1
…
IF Xn = An1 AND X2 = An2 AND … AND Xm = Anm THEN Y = Bn

reduce to single premise for each rule k:

Ak(x1,…, xm) = min { Ak1(x1), Ak2(x2), …, Akm(xm) } or in general: t-norm

● OR-connected premises

IF X1 = A11 OR X2 = A12 OR … OR Xm = A1m THEN Y = B1
…
IF Xn = An1 OR X2 = An2 OR … OR Xm = Anm THEN Y = Bn

reduce to single premise for each rule k:

Ak(x1,…, xm) = max { Ak1(x1), Ak2(x2), …, Akm(xm) } or in general: s-norm
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important:

● if rules of the form IF X is A THEN Y is B interpreted as logical implication

⇒ R(x, y) = Imp( A(x), B(y) ) makes sense

● we obtain:  B‘(y) = supx∈X t( A‘(x), R(x, y) )

interpretation of output set B‘(y):

● B‘k(y) is the set of values that are possible under the particular rule k

● each rule leads to a different restriction of the values that are possible

● must determine set of values that are possible for all rules

⇒ resulting fuzzy sets B‘k(y) obtained from single rules must be mutually intersected!

⇒ aggregation via    B‘(y) = min { B1‘(y), …, Bn‘(y) }

Approximative Reasoning

R1

R2

B1

B2

B

A



Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
13

important:

● if rules of the form IF X is A THEN Y is B are not interpreted as logical
implications, then the function Fct(•) in

R(x, y) = Fct( A(x), B(y) )

can be chosen as required for desired interpretation.

● frequent choice (especially in fuzzy control):

- R(x, y) = min { A(x), B(y) } Mamdani – “implication“

- R(x, y) = A(x) · B(y) Larsen – “implication“

⇒ of course, they are no implications but specific t-norms!

⇒ thus, if relation R(x, y) is given, 
then the composition rule of inference

B‘(y) = A‘(x) ◦ R(x, y) = supx∈X min { A’(x), R(x, y) }

still can lead to a conclusion via fuzzy logic.
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Approximative Reasoning

interpretation of output set B‘(y):

● B‘k(y) is the set of values that are possible under the particular rule k

● technical system must work for all values that are possible

● each rule may extend the set of the values that are possible

⇒ resulting fuzzy sets B‘k(y) obtained from single rules must be mutually united!

⇒ aggregation via    B‘(y) = max { B1‘(y), …, Bn‘(y) }

R1

R2

B1

B2

B

A
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example: [JM96, S. 244ff.]

industrial drill machine → control of cooling supply

modelling

linguistic variable : rotation speed

linguistic terms : very low, low, medium, high, very high

ground set : X with 0 ≤ x ≤ 18000 [rpm]

1000 90005000 13000 17000 rotation 
speed

vl l m h vh
1
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example: (continued)

modelling

linguistic variable : cooling quantity

linguistic terms : very small, small, normal, much, very much

ground set : Y with 0 ≤ y ≤ 18 [liter / time unit]

1 95 13 17 cooling 
quantity

vs s n m vm
1

Approximative Reasoning

industrial drill machine → control of cooling supply
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rule base

IF rotation speed IS very low THEN cooling quantity IS very small

low

medium

high

very high

small

normal

much 

very much

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

sets Svl, Sl, Sm, Sh, Svh sets Cvs, Cs, Cn, Cm, Cvm

“rotation speed” “cooling quantity”

Lecture 04

1. input: crisp value x0 = 10 000 min-1 (not a fuzzy set!)

→ fuzzyfication = determine membership for each fuzzy set over X

→ yields  S’ = (0, 0, ¾, ¼, 0) via x  ( Svl(x0), Sl(x0), Sm(x0), Sh(x0), Svh(x0) )

2. FITA: local inference ⇒ note: Imp(0,a) = 1      (axiom 3)

Svl: C’vs(y) = Imp( 0 , Cvs(y) )

Sl: C’s(y)   = Imp(0, Cs(y) )

Sm: C’n(y) = Imp(¾, Cn(y) )

Sh: C’m(y)  = Imp(¼ , Cm(y) )

Svh: C’vm(y) = Imp( 0 , Cvm(y) )

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

Must we replace
logical Imp() by

technical relation?
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example: (continued)

industrial drill machine → control of cooling supply

Approximative Reasoning
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in case of control task typically no logic-based interpretation:

→ max-aggregation and

→ relation R(x,y) not interpreted as implication.

often: R(x,y) = min(A(x), B(y))          „Mamdani controller“

2. FITA: local inference
Svl: C’vs(y) = min( 0, Cvs(y) ) = 0

Sl: C’s(y)    = min( 0, Cs(y) ) = 0

Sm: C’n(y) = min(¾, Cn(y) ) ≥ 0 

Sh: C’m(y)   = min(¼, Cm(y) ) ≥ 0

Svh: C’vm(y) = min( 0, Cvm(y) ) = 0

⇒ since min(0,a) = 0 and max-aggr. 
we only need to consider Cn and Cm
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→ graphical illustration

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

3. aggregation:
C’(y) =  aggr { C’n(y), C’m(y) } = max { min( ¾, Cn(y) ), min( ¼, Cm(y) ) }

Remark:
This approach can be applied with every t-norm and max-aggregation
⇒ C’(y) = max { t( ¾, Cn(y) ), t( ¼, Cm(y) ) }
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C‘(y) = max { min { ¾, Cn(y) }, min { ¼, Cm(y) } }, x0 = 10 000 [rpm]

1000 90005000 13000 17000

rotation speed

vl l m h vh
1

1 95 13 17

cooling quantity

vs s n m sm
1

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply
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Fuzzy Control

open and closed loop control:
affect the dynamical behavior of a system 
in a desired manner

● open loop control
control is aware of reference values and has a model of the system
⇒ control values can be adjusted,

such that process value of system is equal to reference value

problem: noise! ⇒ deviation from reference value not detected

● closed loop control
now: detection of deviations from reference value possible
(by means of measurements / sensors)
and new control values can take into account the amount of deviation
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open loop control

system
process

control

w u y

process 
value

reference 
value

assumption: undisturbed operation  ⇒ process value = reference value
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closed loop control

system
process

control

w u

d

y

noise

process
value

control deviation = reference value – process value

Fuzzy Control

reference 
value
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required:

model of system / process

→ as differential equations or difference equations (DEs)

→ well developed theory available

so, why fuzzy control?
● if there exists no process model in form of DEs etc.

(operator/human being has realized control manually)

● if process with high-dimensional nonlinearities → no classic methods available

● if control goals are vaguely formulated (e.g. „soft“ changing gears in cars)
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fuzzy description of control behavior

note: fact A‘ is not a fuzzy set but a crisp input

→ actually, it is the current process value

but crisp control value required for the process / system

→ defuzzification (= “condense” fuzzy set to crisp value)

fuzzy controller executes inference step

→ yields fuzzy output set B‘(y)

IF X is A1, THEN Y is B1
IF X is A2, THEN Y is B2
IF X is A3, THEN Y is B3
…
IF X is An, THEN Y is Bn
X is A‘

Y is B‘

similar to approximative reasoning

Fuzzy Control
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defuzzification
● maximum method

- only active rule with largest activation level is taken into account

→ suitable for pattern recognition / classification

→ decision for a single alternative among finitely many alternatives

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: discontinuous curve of output values (leaps)

Def: rule k active ⇔ Ak(x0) > 0

0,5

t

0,5

B‘(y)

0,5

B‘(y)

0,5

B‘(y)
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defuzzification
● maximum mean value method

- all active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y ∈ Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

useful solution?  →

Fuzzy Control
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defuzzification
● center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y ∈ Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

?0,5

B‘(y)

?
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defuzzification
● Center of Gravity (COG)

- all active rules are taken into account

→ but numerically expensive …

→ borders cannot appear in output ( ∃ work-around )

- if only single active rule: independent from activation level

- continuous curve for output values

…only valid for HW solution, today!

Fuzzy Control
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Excursion: COG

triangle:

y1 y2 y3

trapezoid:

y1y2 y4y3

y

B‘(y)

1

pendant in 
probability theory:
expectation value

1 3,77...
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y

z=B‘(y)

1

y1 y2 y3 y4 y5 y6 y7

assumption: fuzzy membership functions piecewise linear

output set B‘(y) represented by sequence of points (y1, z1), (y2, z2), …, (yn, zn) 

⇒ area under B‘(y) and weighted area can be determined additively piece by piece

⇒ linear equation z = m y + b   → insert (yi, zi) and (yi+1,zi+1)

⇒ yields m and b for each of the n-1 linear sections

⇒

⇒

Fuzzy Control
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Defuzzification
● Center of Area (COA)

• developed as an approximation of COG

• let ŷk be the COGs of the output sets B’k(y):

Fuzzy Control

how to:
assume that fuzzy sets Ak(x) and Bk(x) are triangles or trapezoids
let x0 be the crisp input value
for each fuzzy rule “IF Ak is X THEN Bk is Y“

determine B‘k(y) = R( Ak(x0), Bk(y) ), where R(.,.) is the relation
find ŷk as center of gravity of B‘k(y)
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Fuzzy Control

Putting all together:

x0
crisp input

defuzzified
output

→ map controller (in german: Kennfeldregler)


