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Plan for Today

● Fuzzy sets

 Axioms of fuzzy complement, t- and s-norms

 Generators

 Dual tripels
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Fuzzy Sets

Considered so far: 

Standard fuzzy operators

● Ac(x) = 1 – A(x)

● (A ∩ B)(x) = min { A(x), B(x) }

● (A ∪ B)(x) = max { A(x), B(x) } 

⇒ Compatible with operators for crisp sets

with membership functions with values in = { 0, 1 }

 ∃ Non-standard operators? ⇒ Yes! Innumerable many!

● Defined via axioms.

● Creation via generators. 
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Fuzzy Complement: Axioms

Definition

A function c: [0,1] → [0,1] is a fuzzy complement iff

(A1) c(0) = 1 and c(1) = 0.

(A2) ∀ a, b ∈ [0,1]: a ≤ b ⇒ c(a) ≥ c(b). monotone decreasing

(A3) c(·) is continuous.

(A4) ∀ a ∈ [0,1]: c(c(a)) = a

“nice to have”:

involutive

Examples:

a) standard fuzzy complement c(a) = 1 – a 

ad (A1): c(0) = 1 – 0 = 1 and c(1) = 1 – 1 = 0
ad (A2): c‘(a) = –1 < 0 (monotone decreasing)

ad (A3): 
ad (A4): 1 – (1 – a) = a 



Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
5

Fuzzy Complement: Examples

b)  c(a) = 
1   if a ≤ t
0   otherwise for some t ∈ (0, 1)

ad (A1):   c(0) = 1 since 0 < t   and  c(1) = 0 since t < 1.

ad (A2):   monotone (actually: constant) from 0 to t and t to 1, decreasing at t

1

0
t 1



ad (A3):   not valid → discontinuity at t

ad (A4):   not valid → counter example

c(c(¼)) = c(1) = 0  ≠  ¼  for t = ½
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Fuzzy Complement: Examples

c)  c(a) = 

ad (A1):   c(0) = 1 and  c(1) = 0

ad (A2):   c‘(a) = –½ π sin(π a)  < 0   since sin(π a) > 0 for a ∈ (0,1)


ad (A3):   is continuous as a composition of continuous functions;
alternative argument: derivative exists, see c‘(a) in (A2)

ad (A4):   not valid → counter example
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Fuzzy Complement: Examples

ad (A1):   c(0) = 1 and  c(1) = 0

ad (A2):


ad (A3):   is continuous as a composition of continuous functions

ad (A4):

d)  c(a) = for Sugeno class



Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2025/26
8

Fuzzy Complement: Examples

ad (A1):   c(0) = 1 and  c(1) = 0

ad (A2): 

ad (A3):   is continuous as a composition of continuous functions

ad (A4):

e)  c(a) = ( 1 – aw )1/w for w > 0 Yager class



(1 – aw)1/w ≥ (1 – bw)1/w ⇔ 1 – aw ≥ 1 – bw ⇔

aw ≤ bw ⇔ a ≤ b 
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Fuzzy Complement: Fixed Points

Theorem

If function c:[0,1] → [0,1] satisfies axioms (A1) and (A2) of fuzzy complement 
then it has at most one fixed point a* with c(a*) = a*.

Proof:

no fixed point →  see example (b) → no intersection with bisectrix
1

0
t 1

one fixed point →  see example (a) → intersection with bisectrix
1

0
1/2 1

assume ∃ n > 1 fixed points, for example a* and b* with a* < b*
⇒ c(a*) = a* and c(b*) = b*   (fixed points)

⇒ c(a*) < c(b*) with a* < b* impossible if c(·) is monotone decreasing

⇒ contradiction to axiom (A2) ■
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Fuzzy Complement: Fixed Points

Theorem

If function c:[0,1] → [0,1] satisfies axioms (A1) – (A3) of fuzzy complement then 
it has exactly one fixed point a* with c(a*) = a*.

Proof:
Intermediate value theorem → 

If c(·) continuous (A3) and c(0) ≥ c(1)  (A1/A2)

then ∀ v ∈ [c(1), c(0)] = [0,1]: ∃ a ∈ [0,1]: c(a) = v.

⇒ there must be an intersection with bisectrix

⇒ a fixed point exists and by previous theorem there are no other fixed points!   ■

Examples:
(a) c(a) = 1 – a ⇒ a = 1 – a ⇒ a* = ½

(b) c(a) = (1 – aw)1/w ⇒ a = (1 – aw)1/w ⇒ a* = (½)1/w
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Fuzzy Complement: 1st Characterization

defines an 
increasing generator

g(-1)(x) pseudo-inverse

Examples

a)  g(x) = x ⇒ g(-1)(x) = x ⇒ c(a) = 1 – a (Standard)

b)  g(x) = xw ⇒ g(-1)(x) = x1/w ⇒ c(a) = (1 – aw)1/w (Yager class, w > 0)

c)  g(x) = log(x+1)⇒ g(-1)(x) = ex – 1 ⇒ c(a) = exp( log(2) – log(a+1) ) – 1 
1 – a
1 + a= (Sugeno class. λ = 1)

Theorem

c: [0,1] → [0,1] is involutive fuzzy complement iff

∃continuous function g: [0,1] → with

• g(0) = 0

• strictly monotone increasing

• ∀ a ∈ [0,1]: c(a) = g(-1)( g(1) – g(a) ). ■
= g-1( min{ g(1), x } )

?
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Fuzzy Complement: 1st Characterization

→ make sure that pseudoinverse is equal to inverse, here!

 (inverse)

(pseudoinverse)

?

therefore,


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Fuzzy Complement: 1st Characterization

Examples

d)

•

• strictly monotone increasing since

• inverse function on [0,1] is , thus
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Fuzzy Complement: 2nd Characterization

defines a 
decreasing generator

f(-1)(x) pseudo-inverse

Examples

a) f(x) = k – k · x  (k ≥ 1)    f(-1)(x) = 1 – x/k c(a) =  

b) f(x) = 1 – xw f(-1)(x) = (1 – x)1/w c(a) = f-1(aw) = (1 – aw)1/w (Yager)

Theorem

c: [0,1] → [0,1] is involutive fuzzy complement iff

∃continuous function f: [0,1] → with

• f(1) = 0

• strictly monotone decreasing

• ∀ a ∈ [0,1]: c(a) = f(-1)( f(0) – f(a) ). ■
= f-1( min{ f(0), x } )
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Fuzzy Intersection: t-norm

Definition

A function t:[0,1] x [0,1] → [0,1] is a fuzzy intersection or t-norm iff ∀a,b,d ∈ [0,1]

(A1)  t(a, 1) = a (boundary condition)

(A2)  b ≤ d  ⇒ t(a, b) ≤ t(a, d) (monotonicity)

(A3)  t(a,b) = t(b, a) (commutative)

(A4)  t(a, t(b, d)) = t(t(a, b), d) (associative) ■

“nice to have”

(A5)  t(a, b) is continuous (continuity)

(A6)  t(a, a) < a for 0 < a < 1 (subidempotent)

(A7)  a1 < a2 and b1 ≤ b2 ⇒ t(a1, b1) < t(a2, b2) (strict monotonicity)

Note: the only idempotent t-norm is the standard fuzzy intersection
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Fuzzy Intersection: t-norm

Theorem: 

The only idempotent t-norm is the standard fuzzy intersection.

Proof:
Assume there exists a t-norm with t(a,a) = a for all a ∈ [0,1].

• If 0 ≤ a ≤ b ≤ 1 then

a  =  t(a,a)  ≤ t(a,b)  ≤ t(a, 1)  =  a

by assumption by monotonicity by boundary condition

and hence t(a,b) = a.

• If 0 ≤ b ≤ a ≤ 1 then

b  =  t(b,b)  ≤ t(b,a)  ≤ t(b, 1)  =  b

by assumption by monotonicity by boundary condition

and hence t(a,b) = t(b,a) = b.

t(a,b) = min(a,b)
is the only

possible solution!

q.e.d.
by commutativity
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Fuzzy Intersection: t-norm

(a) Standard t(a, b) = min { a, b }

(b) Algebraic Product t(a, b) = a · b

(c) Bounded Difference t(a, b) = max { 0, a + b – 1 }

a  if b = 1

(d) Drastic Product t(a, b) = b  if a = 1

0  otherwise

Name Function

Examples:

Is algebraic product a t-norm?  Check the 4 axioms!

ad (A1): t(a, 1) = a · 1 = a 

ad (A2): a · b ≤ a · d  ⇔ b ≤ d 

ad (A3): t(a, b) = a · b = b · a = t(b, a)    

ad (A4): a · (b · d) = (a · b) · d              

(a) (b)

(c) (d)
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Fuzzy Intersection: Characterization

Example:

f(x) = 1/x – 1 is decreasing generator since

• f(x) is continuous 

• f(1) = 1/1 – 1 = 0 

• f‘(x) = –1/x2 < 0 (monotone decreasing) 

⇒ t(a, b) =  

inverse function is f-1(x) = 

Theorem

Function t: [0,1] x [0,1] → [0,1] is a t-norm ,

∃decreasing generator f:[0,1] → with t(a, b) = f-1( min{ f(0), f(a) + f(b) } ). ■

;      f(0) = ∞ ⇒ min{ f(0), f(a) + f(b) } = f(a) + f(b) 
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Fuzzy Union: s-norm

Definition

A function s:[0,1] x [0,1] → [0,1] is a fuzzy union or s-norm iff ∀a,b,d ∈ [0,1]

(A1)  s(a, 0) = a (boundary condition)

(A2)  b ≤ d  ⇒ s(a, b) ≤ s(a, d) (monotonicity)

(A3)  s(a, b) = s(b, a) (commutative)

(A4)  s(a, s(b, d)) = s(s(a, b), d) (associative) ■

“nice to have”

(A5)  s(a, b) is continuous (continuity)

(A6)  s(a, a) > a for 0 < a < 1 (superidempotent)

(A7)  a1 < a2 and b1 ≤ b2 ⇒ s(a1, b1) < s(a2, b2) (strict monotonicity)

Note: the only idempotent s-norm is the standard fuzzy union
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Fuzzy Union: s-norm

Standard s(a, b) = max { a, b }

Algebraic Sum s(a, b) = a + b – a · b

Bounded Sum s(a, b) = min { 1, a + b }

a  if b = 0

Drastic Union s(a, b) = b  if a = 0

1  otherwise

Name Function

Examples:

Is algebraic sum an s-norm?  Check the 4 axioms!

ad (A1): s(a, 0) = a + 0 – a · 0 = a   

ad (A2): a + b – a · b ≤ a + d – a · d ⇔ b (1 – a) ≤ d (1 – a) ⇔ b ≤ d  
ad (A3): 
ad (A4): 

(a) (b)

(c) (d)
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Fuzzy Union: Characterization

Example:

g(x) = –log(1 – x) is increasing generator since

• g(x) is continuous 

• g(0) = –log(1 – 0) = 0 

• g‘(x) = 1/(1 – x) > 0 (monotone increasing) 

⇒ s(a, b)   

inverse function is g-1(x) = 1 – exp(–x);  g(1) = ∞ ⇒ min{g(1), g(a) + g(b)} = g(a) + g(b)

(algebraic sum)

Theorem

Function s: [0,1] x [0,1] → [0,1] is a s-norm ⇔

∃ increasing generator g:[0,1] → with s(a, b) = g-1( min{ g(1), g(a) + g(b) }).  ■
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Combination of Fuzzy Operations: Dual Triples

Definition

A pair of t-norm t(·, ·) and s-norm s(·, ·) is said to be
dual with regard to the fuzzy complement c(·) iff

• c( t(a, b) )  =  s( c(a), c(b) )

• c( s(a, b) ) =   t( c(a), c(b) )

for all a, b ∈ [0,1]. ■

Background from classical set theory:

∩ and ∪ operations are dual w.r.t. complement since they obey DeMorgan‘s laws

Definition

Let (c, s, t) be a tripel
of fuzzy complement c(·), 
s- and t-norm. 

If t and s are dual to c
then the tripel (c,s, t) is
called a dual tripel.        ■

Examples of dual tripels

t-norm s-norm complement

min { a, b } max { a, b } 1 – a 
a · b a + b – a · b 1 – a 
max { 0, a + b – 1 } min { 1, a + b } 1 – a 
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Dual Triples vs. Non-Dual Triples

c( t( a, b ) ) s( c( a ), c( b ) )

Dual Triple:

- bounded difference

- bounded sum

- standard complement

Non-Dual Triple:

- algebraic product

- bounded sum

- standard complement

⇒ left image ≠ right image

⇒ left image = right image
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Dual Triples vs. Non-Dual Triples

Why are dual triples so important?

⇒ allow equivalence transformations of fuzzy set expressions

⇒ required to transform into some equivalent normal form (standardized input)

⇒ e.g. two stages: intersection of unions

or union of intersections

Example:

←  not in normal form

←  equivalent if DeMorgan‘s law valid (dual triples!)

←  equivalent (distributive lattice!)


