

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Design of Evolutionary Algorithms
	- Design Guidelines
	- Genotype-Phenotype Mapping
	- − Maximum Entropy Distributions

Three tasks:

- 1. Choice of an appropriate problem representation.
- 2. Choice / design of variation operators acting in problem representation.
- 3. Choice of strategy parameters (includes initialization).

- ad 1) different "schools":
	- (a) operate on binary representation and define genotype/phenotype mapping
		- **+** can use standard algorithm
		- **–** mapping may induce unintentional bias in search

(b) no doctrine: use "most natural" representation

- **–** must design variation operators for specific representation
- **+** if design done properly then no bias in search

Design of Evolutionary Algorithms

ad 1a) genotype-phenotype mapping

original problem f: $X \rightarrow \mathbb{R}^d$

scenario: no standard algorithm for search space X available

- standard EA performs variation on binary strings $b \in \mathbb{B}^n$
- fitness evaluation of individual b via $(f \circ g)(b) = f(g(b))$

where g: $\mathbb{B}^n \to X$ is genotype-phenotype mapping

• selection operation independent from representation

4

Genotype-Phenotype-Mapping $\mathbb{B}^n \to [\mathsf{L}, \mathsf{R}] \subset \mathbb{R}$

• Standard encoding for $b \in B^n$

$$
x = L + \frac{R - L}{2^n - 1} \sum_{i=0}^{n-1} b_{n-i} 2^i
$$

→ Problem: *hamming cliffs*

Genotype-Phenotype-Mapping $\mathbb{B}^n \to [\mathsf{L}, \mathsf{R}] \subset \mathbb{R}$

• Gray encoding for $b \in \mathbb{B}^n$

Let $a \in B^n$ standard encoded. Then $b_i =$ a_i , if i = 1 a_{i-1}⊕ a_i, if i > 1 \oplus = XOR

OK, no hamming cliffs any longer …

 \Rightarrow small changes in phenotype "lead to" small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

 \Rightarrow small changes in genotype lead to small changes in phenotype!

but: 1-Bit-change: $000 \rightarrow 100 \Rightarrow \odot$

6

Genotype-Phenotype-Mapping $\mathbb{B}^n \to \mathbb{P}^{\log(n)}$ (example only)

• e.g. standard encoding for $b \in \mathbb{B}^n$

individual:

consider index and associated genotype entry as unit / record / struct;

sort units with respect to genotype value, old indices yield permutation:

= permutation

ad 1a) genotype-phenotype mapping

typically required: strong causality

- \rightarrow small changes in individual leads to small changes in fitness
- \rightarrow small changes in genotype should lead to small changes in phenotype

but: how to find a genotype-phenotype mapping with that property?

necessary conditions:

- 1) g: $\mathbb{B}^n \to X$ can be computed efficiently (otherwise it is senseless)
- 2) g: $\mathbb{B}^n \to X$ is surjective (otherwise we might miss the optimal solution)
- 3) g: Bⁿ → X *preserves closeness* (otherwise strong causality endangered)

Let $d(\cdot, \cdot)$ be a metric on \mathbb{B}^n and $d_X(\cdot, \cdot)$ be a metric on X.

 $\forall x, y, z \in \mathbb{B}^n : d(x, y) \le d(x, z) \implies d_x(g(x), g(y)) \le d_x(g(x), g(z))$

ad 1b) use "most natural" representation

typically required: strong causality

- \rightarrow small changes in individual leads to small changes in fitness
- \rightarrow need variation operators that obey that requirement

but: how to find variation operators with that property?

 \Rightarrow need design guidelines ...

ad 2) **design guidelines for variation operators**

a) reachability

every $x \in X$ should be reachable from arbitrary $x_0 \in X$ after finite number of repeated variations with positive probability bounded from 0

b) unbiasedness

unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions \Rightarrow formally: maximum entropy principle

c) control

variation operator should have parameters affecting shape of distributions; known from theory: weaken variation strength when approaching optimum

ad 2) **design guidelines for variation operators in practice**

binary search space $X = Bⁿ$

variation by k-point or uniform crossover and subsequent mutation

a) *reachability*:

regardless of the output of crossover we can move from $x \in \mathbb{B}^n$ to $y \in \mathbb{B}^n$ in 1 step with probability

$$
p(x,y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} > 0
$$

where H(x,y) is Hamming distance between x and y.

Since min{ $p(x,y)$: $x,y \in \mathbb{B}^n$ } = $\delta > 0$ we are done.

b) *unbiasedness*

don't prefer any direction or subset of points without reason

 \Rightarrow use maximum entropy distribution for sampling!

properties:

- distributes probability mass as uniform as possible
- additional knowledge can be included as constraints: \rightarrow under given constraints sample as uniform as possible

Formally:

Definition:

Let X be discrete random variable (r.v.) with $p_k = P\{ X = x_k \}$ for some index set K. The quantity

$$
H(X) = -\sum_{k \in K} p_k \log p_k
$$

is called the *entropy of the distribution* of X. If X is a continuous r.v. with p.d.f. $f_{x}(\cdot)$ then the entropy is given by

$$
H(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx
$$

The distribution of a random variable X for which $H(X)$ is maximal is termed a *maximum entropy distribution*. ■

Knowledge available:

Discrete distribution with support { $x_1, x_2, ..., x_n$ } with $x_1 < x_2 < ... x_n < \infty$

$$
p_k = \mathsf{P}\{X=x_k\}
$$

Lecture 07

 \Rightarrow leads to nonlinear constrained optimization problem:

$$
-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!
$$

s.t.
$$
\sum_{k=1}^{n} p_k = 1
$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$
L(p, a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)
$$

technische universität dortmund

Lecture 07

$$
L(p, a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)
$$

partial derivatives:

Knowledge available:

Discrete distribution with support { 1, 2, …, n } with $p_k = P$ { $X = k$ } **and** $E[X] = v$

 \Rightarrow leads to nonlinear constrained optimization problem:

$$
-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!
$$

s.t.
$$
\sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu
$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$
L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)
$$

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Lecture 07

Lecture 07

$$
L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)
$$

partial derivatives:

(continued on next slide)

Lecture 07

$$
\Rightarrow e^{a-1} = \frac{1}{\sum_{k=1}^{n} (e^b)^k} \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=1}^{n} (e^b)^i}
$$

⇒ **discrete Boltzmann distribution**

$$
p_k = \frac{q^k}{\sum\limits_{i=1}^n q^i} \qquad (q =
$$

 e^b

 \Rightarrow value of q depends on \vee via third condition: (\bigstar)

$$
\sum_{k=1}^{n} k p_k = \frac{\sum_{k=1}^{n} k q^k}{\sum_{i=1}^{n} q^i} = \frac{1 - (n+1) q^n + n q^{n+1}}{(1-q) (1-q^n)} = \nu
$$

Lecture 07

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

 $\overline{7}$

8910

7 8 9 10

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $E[X] = v$ and $V[X] = \eta^2$

 \Rightarrow leads to nonlinear constrained optimization problem:

$$
-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!
$$

s.t.
$$
\sum_{k=1}^{n} p_k = 1 \text{ and } \sum_{k=1}^{n} k p_k = \nu \text{ and } \sum_{k=1}^{n} (k - \nu)^2 p_k = \eta^2
$$

solution: in principle, via Lagrange (find stationary point of Lagrangian function) but very complicated analytically, if possible at all \Rightarrow consider special cases only **note:** constraints are linear equations in p_k

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Lecture 07

Special case: $n = 3$ **and** $E[X] = 2$ **and** $V[X] = n^2$

Linear constraints uniquely determine distribution:

I.
$$
p_1 + p_2 + p_3 = 1
$$

\nII. $p_1 + 2p_2 + 3p_3 = 2$
\nIII. $p_1 + 0 + p_3 = \eta^2$ $p_1 = \frac{\eta^2}{2}$
\nII-I: $p_2 + 2p_3 = 1$
\nI-III: p_2 $\begin{bmatrix} \frac{\eta^2}{2} & \frac{\eta^2}{2} \\ \frac{\eta^2}{2$

technische universität dortmund

Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, ... } and $E[X] = v$

 \Rightarrow leads to infinite-dimensional nonlinear constrained optimization problem:

$$
-\sum_{k=0}^{\infty} p_k \log p_k \longrightarrow \max!
$$

s.t.
$$
\sum_{k=0}^{\infty} p_k = 1 \quad \text{and} \quad \sum_{k=0}^{\infty} k p_k = \nu
$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$
L(p, a, b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1 \right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu \right)
$$

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Lecture 07

Lecture 07

$$
L(p, a, b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1 \right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu \right)
$$

partial derivatives:

(continued on next slide)

Lecture 07

$$
\Rightarrow e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}
$$

set $q = e^b$ and insights that $q < 1 \Rightarrow \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$

 \Rightarrow $p_k = (1 - q) q^k$ for $k = 0, 1, 2, \ldots$ geometrical distribution

it remains to specify q; to proceed recall that

$$
\sum_{k=0}^{\infty} k q^k = \frac{q}{(1-q)^2}
$$

⇒ value of q depends on v via third condition: (火)

$$
\sum_{k=0}^{\infty} k p_k = \frac{\sum_{k=0}^{\infty} k q^k}{\sum_{i=0}^{\infty} q^i} = \frac{q}{1-q} \stackrel{!}{=} \nu
$$

$$
\Rightarrow \quad q = \frac{\nu}{\nu+1} = 1 - \frac{1}{\nu+1}
$$

$$
\Rightarrow p_k = \frac{1}{\nu+1} \left(1 - \frac{1}{\nu+1}\right)^k
$$

Lecture 07

technische universität dortmund

Overview:

- *discrete uniform* distribution
- *Boltzmann* distribution
- N.N. (**not** Binomial distribution)

-
- and require $E[X] = \theta \implies$ *geometrical* distribution
- and require $V[X] = \eta^2 \implies ?$
- support $\mathbb Z$ \implies not defined!
	-
-
- and require $E[|X|] = \theta \Rightarrow bi-geometrical distribution (discrete Laplace dist.)$
- and require $E[|X|^2] = \eta^2$ \Rightarrow N.N. (*discrete Gaussian* distr.)

support $[a,b] \subset R$ \Rightarrow uniform distribution

support \mathbb{R}^+ with $E[X] = \theta \implies$ Exponential distribution

support R with E[X] = θ , V[X] = $\eta^2 \implies$ normal / Gaussian distribution N(θ , η^2)

Lecture 07

for permutation distributions ?

 \rightarrow uniform distribution on all possible permutations

```
set v[j] = j for j = 1, 2, ..., n
for i = n to 1 step -1draw k uniformly at random from { 1, 2, ..., i }
  swap v[i] and v[k]
endfor 
                                                               generates 
                                                                permutation 
                                                               uniformly at 
                                                               random in 
                                                               \Theta(n) time
```
Guideline:

Only if you know something about the problem *a priori* or

if you have learnt something about the problem *during the search*

 \Rightarrow include that knowledge in search / mutation distribution (via constraints!)

29