

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Evolutionary Algorithms (EA)
	- Optimization Basics
	- EA Basics

Optimization Basics

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

given:

objective function f: X → \mathbb{R}

```
feasible region X (= nonempty set)
```
objective: find solution with *minimal* or *maximal* value!

optimization problem:

find $x^* \in X$ such that $f(x^*) = min\{ f(x) : x \in X \}$

x* **global solution** f(x*) **global optimum**

note:

$$
\max\{ f(x) : x \in X \} = -\min\{-f(x) : x \in X \}
$$

local solution $x^* \in X$: $\forall x \in N(x^*)$: $f(x^*) \le f(x)$ neighborhood of x* = b ounded subset of X $\frac{e}{x}$ if x* local solution then f(x*) **local optimum / minimum**

$$
\text{Example:} \quad \mathsf{X} = \mathbb{R}^n, \ \mathsf{N}_{\varepsilon}(\mathsf{x}^*) = \{ \ \mathsf{x} \in \mathsf{X} : || \ \mathsf{x} - \mathsf{x}^*||_2 \leq \varepsilon \ \} \quad (\varepsilon > 0)
$$

remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

example:

f: [a,b] $\rightarrow \mathbb{R}$, global solution at x^*

What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (e.g. ill-shaped feasible region)
- non-smoothness / ruggedness (weak causality) \longrightarrow strong causality needed!
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem $(\Rightarrow$ black / gray box optimization)
- \rightarrow f(x) = a₁ x₁ + ... + a_n x_n → max! with x_i ∈ {0,1}, a_i ∈ \mathbb{R} add constaint $g(x) = b_1 x_1 + ... + b_n x_n \le b$ \Rightarrow x_i* = 1 iff a_i > 0 ⇒ NP-hard

add capacity constraint to TSP \Rightarrow CVRP \Rightarrow still harder

6

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required

⇒ **don't apply EAs**

randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient

⇒ **EAs worth a try**

idea: using **biological evolution** as **metaphor** and as **pool of inspiration**

⇒ interpretation of biological evolution as iterative method of improvement

feasible solution $x \in X = S_1 x ... x S_n$ = chromosome of **individual** multiset of feasible solutions = **population**: multiset of individuals **objective function** f: $X \rightarrow \mathbb{R}$ = **fitness function**

<u>often:</u> $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,...,n\}\}\$

<u>also :</u> combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets

⇒ structure of feasible region / search space defines **representation** of individual

8

Lecture 06

Selection

- (a) select parents that generate offspring \rightarrow selection for **reproduction**
- (b) select individuals that proceed to next generation \rightarrow selection for **survival**

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals' chromosomes $x \leftrightarrow$ maintain diversity)

Selection methods

population P = $(x_1, x_2, ..., x_n)$ with μ individuals

two approaches:

- 1. repeatedly select individuals from population with replacement
- 2. rank individuals somehow and choose those with best ranks (no replacement)
- *uniform / neutral selection* choose index i with probability $1/\mu$

• *fitness-proportional selection* choose index i with probability \mathbf{s}_i = problems: $f(x) > 0$ for all $x \in X$ required $\implies g(x) = exp(f(x)) > 0$ but already sensitive to additive shifts $g(x) = f(x) + c$

almost deterministic if large differences, almost uniform if small differences

Selection methods

population P = $(x_1, x_2, ..., x_u)$ with μ individuals

• *rank-proportional selection*

order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks

⇒ avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!)

• *k-ary tournament selection*

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

 \Rightarrow has all advantages of rank-based selection and probability that best individual does not survive:

Selection methods without replacement

population P = $(x_1, x_2, ..., x_n)$ with μ parents and population $Q = (y_1, y_2, ..., y_\lambda)$ with λ offspring

• **(**µ**,** λ**)-***selection* or *truncation selection on offspring* or *comma-selection* rank λ offspring according to their fitness select μ offspring with best ranks

 \Rightarrow best individual may get lost, $\lambda \geq \mu$ required

- **(**µ**+**λ**)-***selection* or *truncation selection on parents + offspring* or *plus-selection* merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
- \Rightarrow best individual survives for sure

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- *Intrinsic elitism*: method selects from parent and offspring, best survives with probability 1
- *Forced elitism*: if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Variation operators: depend on representation

mutation \rightarrow alters a single individual

recombination \rightarrow creates single offspring from two or more parents

may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability

Variation in \mathbb{B}^n

Individuals $\in \{0, 1\}^n$

- Mutation
	- a) local \rightarrow choose index $k \in \{1, ..., n\}$ uniformly at random, flip bit k, i.e., $x_k = 1 - x_k$
	- b) global \rightarrow for each index $k \in \{1, ..., n\}$: flip bit k with probability $p_m \in (0,1)$
	- c) "nonlocal" \rightarrow choose K indices at random and flip bits with these indices
	- d) inversion \longrightarrow choose start index k_s and end index k_e at random invert order of bits between start and end index

1 Ω 0 1 1 1 **1** \bigcirc 1 a) 1 $k=2$ **0** 0 **1 0** b) 1 1 **1 0 0** 1 k_{s} $k_{\rm e}$ d) **0** \bigcap 0 **0** c) 1 $K=2$ \rightarrow \rightarrow

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Variation in \mathbb{B}^n **Variation** in \mathbb{B}^n

Lecture 06

- Recombination (two parents)
	- a) 1-point crossover \longrightarrow draw cut-point $k \in \{1,...,n-1\}$ uniformly at random; choose first k bits from 1st parent, choose last n-k bits from 2nd parent
	- b) K-point crossover \longrightarrow draw K distinct cut-points uniformly at random; choose bits 1 to k_1 from 1st parent, choose bits k_1+1 to k_2 from 2nd parent, choose bits k_2+1 to k_3 from 1st parent, and so forth ...
	- c) uniform crossover \rightarrow for each index i: choose bit i with equal probability from 1st or 2nd parent

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Variation in \mathbb{B}^n

Individuals $\in \{0, 1\}^n$

- Recombination (multiparent: ρ = #parents)
	- a) diagonal crossover $(2 < \rho < n)$
		- \rightarrow choose ρ 1 distinct cut points, select chunks from diagonals

AAAAAAAAAA **BBBBBBBBBBBBBBBBBBBB** dcccccc DDDDDDDDDD

ABBBCCDDDD BCCCDDAAAA CDDDAABBBB DAAABBCCCC

can generate ρ offspring; otherwise choose initial chunk at random for single offspring

- b) gene pool crossover $(p > 2)$
	- \rightarrow for each gene: choose donating parent uniformly at random

Variation in \mathbb{P}_n

• Recombination (two parents)

technische universität

dortmund

- a) order-based crossover (OBX)
	- select two indices k_1 and k_2 with $k_1 \leq k_2$ uniformly at random
	- copy genes k_1 to k_2 from 1st parent to offspring (keep positions)
	- copy genes from left (pos. 1) to right (pos. n) of $2nd$ parent, insert after pos. k_2 in offspring (skip values already contained)

- b) partially mapped crossover (PMX) [a version of]
	- select two indices k_1 and k_2 with $k_1 \leq k_2$ uniformly at random
	- copy genes k_1 to k_2 from 1st parent to offspring (keep positions)
	- copy all genes not already contained in offspring from 2nd parent (keep positions)
	- from left to right: fill in remaining genes from $2nd$ parent

Individuals $\in X = \pi(1, \ldots, n)$

Lecture 06

Lecture 06 Evolutionary Algorithm Basics • Recombination (two parents) Individuals $\in X = \pi(1, \ldots, n)$ c) partially mapped crossover (PMX) [Grefenstette et al. 1985] \rightarrow consider array as ring! - given: 2 permutations **a** and **b** of length n - select 2 indices k_1 and k_2 uniformly at random - copy **b** to **c** - procedure = **6 4 5 3 7 2 1 6 4 5 7 3 2 1 2 3 5 7 1 6 4 6 4 5 3 7 2 1 Variation** in \mathbb{P}_n $i = k1$ **repeat j = findIndex(a[i], c) swap(c[i], c[j])** $i = (i + 1) \mod n$ u ntil **i** $== k2$ **6 4 5 7 1 2 3 2 4 5 7 1 6 3**

24

Lecture 06

● Mutation

 $0 =$

dortmund

0

additive: $Y = X + Z$ (Z: n-dimensional random vector) $1 + 1$ offspring = parent $+$ mutation a) local \rightarrow Z with bounded support **Definition** Let $f_z: \mathbb{R}^n \to \mathbb{R}^+$ be p.d.f. of r.v. Z. The set { $x \in \mathbb{R}^n$: $f_z(x) > 0$ } is f_Z $f_Z(x) = \frac{4}{3} (1 - x^2) \cdot 1_{[-1,1]}(x)$ termed the *support* of Z. $0₊$ Ω x b) nonlocal \rightarrow Z with unbounded support f_Z

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

• Recombination (two parents)

Evolutionary Algorithm Basics

- a) all crossover variants adapted from \mathbb{B}^n
- $z = \xi \cdot x + (1 \xi) \cdot y$ with $\xi \in [0, 1]$ b) intermediate
- c) intermediate (per dimension) $\forall i : z_i = \xi_i \cdot x_i + (1 \xi_i) \cdot y_i$ with $\xi_i \in [0, 1]$
- $\forall i: z_i = B_i \cdot x_i + (1 B_i) \cdot y_i$ with $B_i \sim B(1, \frac{1}{2})$ d) discrete
- e) simulated binary crossover (SBX)
	- \rightarrow for each dimension with probability p_c $\overline{}$ draw z_i from:

Variation in \mathbb{R}^n **Variation** in \mathbb{R}^n

Lecture 06

• Recombination (multiparent), $\rho \geq 3$ parents

a) intermediate
$$
z = \sum_{k=1}^{\rho} \xi^{(k)} x_i^{(k)}
$$
 where $\sum_{k=1}^{\rho} \xi^{(k)} = 1$ and $\xi^{(k)} \ge 0$

(all points in convex hull)

b) intermediate (per dimension) $\forall i : z_i = \sum_{i=1}^{p} \xi_i^{(k)} x_i^{(k)}$ $k=1$ $\forall i: z_i \in \left[\min_k \{x_i^{(k)}\}, \max_k \{x_i^{(k)}\}\right]$

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a strictly quasiconvex function. If $f(x) = f(y)$ for some $x \neq y$ then every offspring generated by intermediate recombination is better than its parents.

Proof:

f strictly quasiconvex $\Rightarrow f(\xi \cdot x + (1-\xi) \cdot y) < \max\{f(x), f(y)\}\$ for $0 < \xi < 1$ since $f(x) = f(y)$ $\Rightarrow \max\{f(x), f(y)\} = \min\{f(x), f(y)\}\$ $\Rightarrow f(\xi \cdot x + (1-\xi) \cdot y) < \min\{f(x), f(y)\}\$ for $0 < \xi < 1$

■

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and $f(x) < f(y)$ for some $x \neq y$. If $(y - x)'$ $\nabla f(x)$ < 0 then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

Proof:

If $d'\nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e. $\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}]: f(x+s \cdot d) < f(x).$

Here: $d = y - x$ such that $P\{f(\xi x + (1 - \xi)y) < f(x)\} \ge \frac{\tilde{s}}{\|d\|} > 0$.

sublevel set $S_{\alpha} = \{x \in \mathbb{R}^n : f(x) < \alpha\}$

technische universität dortmund