

## **Computational Intelligence**

Winter Term 2024/25

Prof. Dr. Günter Rudolph

**Computational Intelligence** 

Fakultät für Informatik

TU Dortmund

- Evolutionary Algorithms (EA)
  - Optimization Basics
  - EA Basics

## **Optimization Basics**



G. Rudolph: Computational Intelligence • Winter Term 2024/25

given:

objective function  $f \colon X \to \mathbb{R}$ 

```
feasible region X (= nonempty set)
```

objective: find solution with minimal or maximal value!

#### optimization problem:

find  $x^* \in X$  such that  $f(x^*) = \min\{ f(x) : x \in X \}$ 

x\* global solutionf(x\*) global optimum

#### note:

$$max\{ f(x) : x \in X \} = -min\{ -f(x) : x \in X \}$$

local solution  $x^* \in X$ : \* local calution  $\forall x \in N(x^*): f(x^*) \leq f(x)$ neighborhood of  $x^* =$ bounded subset of X

example: 
$$X = \mathbb{R}^n$$
,  $N_{\varepsilon}(x^*) = \{ x \in X : || x - x^* ||_2 \le \varepsilon \}$  ( $\varepsilon > 0$ )

#### remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

## example:

f: [a,b]  $\rightarrow \mathbb{R}$ , global solution at **x**\*



#### What makes optimization difficult?

#### some causes:

- local optima (is it a global optimum or not?)
- constraints (e.g. ill-shaped feasible region)
- non-smoothness / ruggedness (weak causality) ------ strong causality needed!
- discontinuities ( $\Rightarrow$  nondifferentiability, no gradients)
- lack of knowledge about problem ( $\Rightarrow$  black / gray box optimization)

→  $f(x) = a_1 x_1 + ... + a_n x_n \rightarrow max!$  with  $x_i \in \{0,1\}$ ,  $a_i \in \mathbb{R}$   $\Rightarrow x_i^* = 1$  iff  $a_i > 0$ add constaint  $g(x) = b_1 x_1 + ... + b_n x_n \le b$   $\Rightarrow$  NP-hard

add capacity constraint to TSP  $\Rightarrow$  CVRP

 $\Rightarrow$  still harder

#### When using which optimization method?

#### mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required

## ⇒ don't apply EAs

#### randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient

#### $\Rightarrow$ EAs worth a try

idea: using biological evolution as metaphor and as pool of inspiration

 $\Rightarrow$  interpretation of biological evolution as iterative method of improvement

feasible solution  $x \in X = S_1 x \dots x S_n$ = chromosome of individualmultiset of feasible solutions= population: multiset of individualsobjective function  $f: X \to \mathbb{R}$ = fitness function

often: X =  $\mathbb{R}^n$ , X =  $\mathbb{B}^n$  = {0,1}<sup>n</sup>, X =  $\mathbb{P}_n$  = {  $\pi$  :  $\pi$  is permutation of {1,2,...,n} }

<u>also</u>: combinations like  $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$  or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual







## Selection

(a) select parents that generate offspring

(b) select individuals that proceed to next generation  $\rightarrow$  selection for **survival** 

#### necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals' chromosomes x ( $\rightarrow$  maintain diversity)

 $\rightarrow$  selection for **reproduction** 

#### **Selection methods**

population P =  $(x_1, x_2, ..., x_{\mu})$  with  $\mu$  individuals

#### two approaches:

- 1. repeatedly select individuals from population with replacement
- 2. rank individuals somehow and choose those with best ranks (no replacement)
- *uniform / neutral selection* choose index i with probability  $1/\mu$

• fitness-proportional selection choose index i with probability  $s_i = \frac{f(x_i)}{\sum\limits_{x \in P} f(x)}$ problems: f(x) > 0 for all  $x \in X$  required  $\Rightarrow g(x) = \exp(f(x)) > 0$ but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

#### Selection methods

population P =  $(x_1, x_2, ..., x_{\mu})$  with  $\mu$  individuals

rank-proportional selection

order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks

 $\Rightarrow$  avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!)

k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

 $\Rightarrow$  has all advantages of rank-based selection and probability that best individual does not survive:



$$\left(1-rac{1}{\mu}
ight)^{k\,\mu} \ < \ e^{-k} \ \geq \ 4^{-k}$$

Lecture 06

U technische universität dortmund

#### **Selection methods without replacement**

population P = ( $x_1, x_2, ..., x_{\mu}$ ) with  $\mu$  parents and population Q = ( $y_1, y_2, ..., y_{\lambda}$ ) with  $\lambda$  offspring

 (μ, λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks

 $\Rightarrow$  best individual may get lost,  $\lambda \ge \mu$  required

- (μ+λ)-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
- $\Rightarrow$  best individual survives for sure

#### **Selection methods: Elitism**

*Elitist selection*: best parent is not replaced by worse individual.

- *Intrinsic elitism*: method selects from parent and offspring, best survives with probability 1
- *Forced elitism*: if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

| method                | P{ select best } | from parents & offspring | intrinsic elitism |
|-----------------------|------------------|--------------------------|-------------------|
| neutral               | < 1              | no                       | no                |
| fitness proportionate | < 1              | no                       | no                |
| rank proportionate    | < 1              | no                       | no                |
| k-ary tournament      | < 1              | no                       | no                |
| (μ <b>+</b> λ)        | = 1              | yes                      | yes               |
| (μ,λ)                 | = 1              | no                       | no                |

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2024/25 16

#### Variation operators: depend on representation

- mutation  $\rightarrow$  alters a <u>single</u> individual

recombination  $\rightarrow$  creates single offspring from two or more parents

may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability

## Variation in $\mathbb{B}^n$

## Individuals $\in \{ 0, 1 \}^n$

Mutation

| a) local | $\rightarrow$ choose index k $\in$ { 1,, n } uniformly at random, |  |
|----------|-------------------------------------------------------------------|--|
|          | flip bit k, i.e., $x_k = 1 - x_k$                                 |  |

- b) global  $\rightarrow$  for each index  $k \in \{1, ..., n\}$ : flip bit k with probability  $p_m \in (0,1)$
- c) "nonlocal"  $\rightarrow$  choose K indices at random and flip bits with these indices
- d) inversion  $\rightarrow$  choose start index k<sub>s</sub> and end index k<sub>e</sub> at random invert order of bits between start and end index

| 1 |     | 1 |    | 0 | $\rightarrow$ | 0 |                | 1 |
|---|-----|---|----|---|---------------|---|----------------|---|
| 0 | k=2 | 1 |    | 0 |               | 0 | k <sub>s</sub> | 1 |
| 0 |     | 0 |    | 1 | K=2           | 0 |                | 0 |
| 1 |     | 1 |    | 0 | $\rightarrow$ | 0 | k <sub>e</sub> | 0 |
| 1 | a)  | 1 | b) | 1 | c)            | 1 | d)             | 1 |

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2024/25

## Variation in $\mathbb{B}^n$

Individuals  $\in \{ 0, 1 \}^n$ 

Lecture 06

- Recombination (two parents)
  - a) 1-point crossover → draw cut-point k ∈ {1,...,n-1} uniformly at random; choose first k bits from 1st parent, choose last n-k bits from 2nd parent
  - b) K-point crossover  $\rightarrow$  draw K distinct cut-points uniformly at random; choose bits 1 to k<sub>1</sub> from 1st parent, choose bits k<sub>1</sub>+1 to k<sub>2</sub> from 2nd parent, choose bits k<sub>2</sub>+1 to k<sub>3</sub> from 1st parent, and so forth ...
  - c) uniform crossover  $\rightarrow$  for each index i: choose bit i with equal probability from 1st or 2nd parent



U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2024/25

Variation in  $\mathbb{B}^n$ 

Individuals  $\in \{0, 1\}^n$ 

- Recombination (multiparent: ρ = #parents)
  - a) diagonal crossover (2 <  $\rho$  < n)
    - $\rightarrow$  choose  $\rho$  1 distinct cut points, select chunks from diagonals

AAAAAAAAAA BBBBBBBBBBB CCCCCCCCCC DDDDDDDDD ABBBCCDDDD BCCCDDAAAA CDDDAABBBB DAAABBCCCC

can generate  $\rho$  offspring; otherwise choose initial chunk at random for single offspring

Lecture 06

- b) gene pool crossover ( $\rho$  > 2)
  - $\rightarrow$  for each gene: choose donating parent uniformly at random



#### Variation in $\mathbb{P}_n$

- Recombination (two parents)
  - a) order-based crossover (OBX)
    - select two indices  $k_1$  and  $k_2$  with  $k_1 \le k_2$  uniformly at random
    - copy genes  $k_1$  to  $k_2$  from 1<sup>st</sup> parent to offspring (keep positions)
    - copy genes from left (pos. 1) to right (pos. n) of  $2^{nd}$  parent, insert after pos.  $k_2$  in offspring (skip values already contained)

- b) partially mapped crossover (PMX) [a version of]
  - select two indices  $k_1$  and  $k_2$  with  $k_1 \le k_2$  uniformly at random
  - copy genes  $k_1$  to  $k_2$  from 1<sup>st</sup> parent to offspring (keep positions)
  - copy all genes not already contained in offspring from 2<sup>nd</sup> parent (keep positions)
  - from left to right: fill in remaining genes from 2<sup>nd</sup> parent

| 2<br>6 | 3<br>4 | 5<br>5 | 7<br>3 | 1<br>7 | 6<br>2 | <b>4</b><br>1 |  |
|--------|--------|--------|--------|--------|--------|---------------|--|
| x      | x      | x      | 7      | 1      | 6      | x             |  |
| 5      | ર      | 2      | 7      | 1      | 6      | Δ             |  |

| 2<br>6 | 3<br>4 | 5<br>5 | 7<br>3 | 1<br>7 | 6<br>2 | <b>4</b><br>1 |
|--------|--------|--------|--------|--------|--------|---------------|
| x      | x      | x      | 7      | 1      | 6      | x             |
| x      | 4      | 5      | 7      | 1      | 6      | x             |
| 3      | 4      | 5      | 7      | 1      | 6      | 2             |

Lecture 06

Individuals  $\in X = \pi(1, ..., n)$ 

| Evolutionary Algorithm Basics                                                                        | Lecture     | 06     | 5      |        |             |        |        |               |
|------------------------------------------------------------------------------------------------------|-------------|--------|--------|--------|-------------|--------|--------|---------------|
| <b>Variation</b> in $\mathbb{P}_n$                                                                   | Individuals | 6 ∈    | Х      | = 7    | π <b>(1</b> | ,      | ., I   | n)            |
| <ul> <li>Recombination (two parents)</li> </ul>                                                      |             |        |        |        |             |        |        |               |
| c) partially mapped crossover (PMX) [Grefenstette et al. 1985] $\rightarrow$ consider array as ring! |             | 2<br>6 | 3<br>4 | 5<br>5 | 7<br>3      | 1<br>7 | 6<br>2 | <b>4</b><br>1 |
| - given: 2 permutations а and ъ of length n                                                          |             | 6      | 4      | 5      | 3           | 7      | 2      | 1             |
| - select 2 indices k <sub>1</sub> and k <sub>2</sub> uniformly at random<br>- сору ъ tо с            |             | 6      | 4      | 5      | 7           | 3      | 2      | 1             |
| - procedure =                                                                                        | [           | 6      | 4      | 5      | 7           | 1      | 2      | 3             |
| i = k1<br>repeat                                                                                     |             | 2      | 4      | 5      | 7           | 1      | 6      | 3             |
| <pre>j = findIndex(a[i], c) swap(c[i], c[j]) i = (i + 1) mod n until i == k2</pre>                   |             |        |        |        |             |        |        |               |

# G. Rudolph: Computational Intelligence • Winter Term 2024/25 24

Lecture 06

Individuals  $X \in \mathbb{R}^n$ 

## **Evolutionary Algorithm Basics**

#### **Variation** in $\mathbb{R}^n$

technische universität

dortmund





#### G. Rudolph: Computational Intelligence • Winter Term 2024/25 25

## Variation in $\mathbb{R}^n$

- Recombination (two parents)
  - a) all crossover variants adapted from  $\mathbb{B}^n$
  - b) intermediate  $z = \xi \cdot x + (1 \xi) \cdot y$  with  $\xi \in [0, 1]$
  - c) intermediate (per dimension)  $\forall i : z_i = \xi_i \cdot x_i + (1 \xi_i) \cdot y_i$  with  $\xi_i \in [0, 1]$
  - d) discrete  $\forall i: z_i = B_i \cdot x_i + (1 B_i) \cdot y_i$  with  $B_i \sim B(1, \frac{1}{2})$
  - e) simulated binary crossover (SBX)
    - $\rightarrow$  for each dimension with probability  ${\rm p_c}$







## Variation in $\mathbb{R}^n$

Individuals  $X \in \mathbb{R}^n$ 

Lecture 06

• Recombination (multiparent),  $\rho \ge 3$  parents

a) intermediate 
$$z = \sum_{k=1}^{\rho} \xi^{(k)} x_i^{(k)}$$
 where  $\sum_{k=1}^{\rho} \xi^{(k)} = 1$  and  $\xi^{(k)} \ge 0$ 

(all points in convex hull)

b) intermediate (per dimension)  $\forall i : z_i = \sum_{k=1}^{\rho} \xi_i^{(k)} x_i^{(k)}$  $\forall i : z_i \in \left[\min_k \{x_i^{(k)}\}, \max_k \{x_i^{(k)}\}\right]$ 



#### Theorem

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a strictly quasiconvex function. If f(x) = f(y) for some  $x \neq y$  then every offspring generated by intermediate recombination is better than its parents.

#### **Proof:**

f strictly quasiconvex  $\Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \max\{f(x), f(y)\}$  for  $0 < \xi < 1$ 

since  $f(x) = f(y) \implies \max\{f(x), f(y)\} = \min\{f(x), f(y)\}$ 

 $\Rightarrow \ f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{\ f(x), f(y) \ \} \ \text{for} \ 0 < \xi < 1$ 

#### Theorem

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a differentiable function and f(x) < f(y) for some  $x \neq y$ . If (y - x),  $\nabla f(x) < 0$  then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

#### **Proof:**

If  $d' \nabla f(x) < 0$  then  $d \in \mathbb{R}^n$  is a direction of descent, i.e.  $\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}] : f(x + s \cdot d) < f(x).$ 

Here: d = y - x such that  $P\{f(\xi x + (1 - \xi) y) < f(x)\} \ge \frac{\tilde{s}}{\|d\|} > 0.$ 





sublevel set  $S_{\alpha} = \{x \in \mathbb{R}^n : f(x) < \alpha\}$ 

U technische universität dortmund