

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Plan for Today

Lecture 04

- Approximate Reasoning
- Fuzzy Control

technische universität dortmund

technische universität

Approximative Reasoning

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

So far:

- p: IF X is A THEN Y is B
- $\rightarrow R(x, y) = Imp(A(x), B(y))$

rule as relation; fuzzy implication

- rule:
- IF X is A THEN Y is B
- fact: X is A'
 conclusion: Y is B'

technische universität

 \rightarrow B'(y) = sup_{x \in X} t(A'(x), R(x, y))

composition rule of inference

Thus:

- B'(y) = $\sup_{x \in X} t(A'(x), Imp(A(x), B(y))$
- given : fuzzy rule
- : fuzzy set A' input
- output : fuzzy set B'

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Lecture 04

special case:

$$A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$$
 crisp input!

$$\mathsf{B}^{\boldsymbol{\cdot}}(\mathsf{y}) \qquad = \qquad \quad \mathsf{sup}_{\mathsf{x}\in\mathsf{X}}\;\mathsf{t}(\;\mathsf{A}^{\boldsymbol{\cdot}}(\mathsf{x}),\;\mathsf{Imp}(\;\mathsf{A}(\mathsf{x}),\;\mathsf{B}(\mathsf{y})\;)\;)$$

$$= \begin{cases} \sup_{x \neq x_0} t(0, Imp(A(x), B(y))) & \text{for } x \neq x_0 \\ \\ t(1, Imp(A(x_0), B(y))) & \text{for } x = x_0 \end{cases}$$

$$= \begin{cases} 0 & \text{for } x \neq x_0 & \text{since } t(0, a) = 0 \\ \\ Imp(A(x_0), B(y)) & \text{for } x = x_0 & \text{since } t(a, 1) = a \end{cases}$$

Approximative Reasoning

Lecture 04

by a)

Lemma:

- a) t(a, 1) = a
- b) t(a, b) ≤ min { a, b }
- c) t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for $b \le 1$, that $t(a, b) \le t(a, 1) = a$. Commutativity (axiom 3) and monotonicity lead in case of $a \le 1$ to $t(a, b) = t(b, a) \le t(b, 1) = b$. Thus, t(a, b) is less than or equal to a as well as b, which in turn implies $t(a, b) \le min\{a, b\}$.

ad c) From b) follows $0 \le t(0, a) \le \min \{0, a\} = 0$ and therefore t(0, a) = 0.

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

Axioms of Aggregation

[cf. Fung/Fu 1975; quoted from W. Cholewa: Fuzzy Sets & Systems 17:249-258, 1985]

Let A, A₁, A₂, ... be fuzzy sets over X. The aggregate is denoted by $A_1 \oplus A_2$.

- (A1) \exists function \circ : [0,1] x [0,1] \rightarrow [0,1] with $(A_1 \oplus A_2)(x) = A_1(x) \circ A_2(x)$ $\forall x \in X$
- (A2) ∀A: A⊕ A = A
- (A3) \forall i, j : $A_i \oplus A_j = A_j \oplus A_j$
- (A4) For $m \ge 3$: $A_1 \oplus ... \oplus A_m = (A_1 \oplus ... \oplus A_{m-1}) \oplus A_m$
- (A5) \forall i, j, k : $A_i \oplus (A_j \oplus A_k) = (A_i \oplus A_j) \oplus A_k$
- (A6) Let $A_1 = A \oplus A_3$ and $A_2 = A \oplus A_4$. If $A_3(x) > A_4(x)$ then $A_1(x) > A_2(x)$ $\forall x \in X$

Theoren

If Axioms (A1) – (A6) hold, then only three types of aggregation are possible:

- 1. $a \circ b = min(a, b)$
- 2. $a \circ b = max(a, b)$
- 3. $a \circ b = min(a, b)$ for $a, b \ge \theta$; = max(a, b) for $a, b \le \theta$; $= \theta$ otherwise $(0 < \theta < 1)$

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

Multiple rules:

$$\begin{array}{ll} \text{IF X is } A_1, \text{ THEN Y is } B_1 \\ \text{IF X is } A_2, \text{ THEN Y is } B_2 \\ \text{IF X is } A_3, \text{ THEN Y is } B_3 \\ \dots \\ \text{IF X is } A_n, \text{ THEN Y is } B_n \\ \hline X \text{ is } A' \\ \hline Y \text{ is } B' \\ \end{array} \qquad \begin{array}{ll} \rightarrow R_1(x, y) = \text{Imp}_1(A_1(x), B_1(y)) \\ \rightarrow R_2(x, y) = \text{Imp}_2(A_2(x), B_2(y)) \\ \rightarrow R_3(x, y) = \text{Imp}_3(A_3(x), B_3(y)) \\ \dots \\ \rightarrow R_n(x, y) = \text{Imp}_n(A_n(x), B_n(y)) \end{array}$$

Multiple rules for $\underline{fuzzy input}$: A'(x) is given

$$B_1'(y) = \sup_{x \in X} t(A'(x), R_1(x, y))$$

$$\vdots$$

$$B_n'(y) = \sup_{x \in X} t(A'(x), R_n(x, y))$$
aggregation of rules or local inferences necessary!

aggregate!
$$\Rightarrow$$
 B'(y) = aggr{ B₁'(y), ..., B_n'(y)}, where aggr = $\begin{cases} min \\ max \end{cases}$ Why?

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

FITA: "First inference, then aggregate!"

- 1. Each rule of the form IF X is A_k THEN Y is B_k must be transformed by an appropriate fuzzy implication $Imp_k(\cdot,\cdot)$ to a relation R_k : $R_k(x, y) = Imp_k(A_k(x), B_k(y))$.
- 2. Determine $B_k'(y) = R_k(x, y) \circ A'(x)$ for all k = 1, ..., n (local inference).
- 3. Aggregate to $B'(y) = \beta(B_1'(y), ..., B_n'(y))$.

FATI: "First aggregate, then inference!"

- 1. Each rule of the form IF X ist A_k THEN Y ist B_k must be transformed by an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to a relation R_k : $R_k(x, y) = Imp_k(A_k(x), B_k(y))$.
- 2. Aggregate $R_1, ..., R_n$ to a **superrelation** with aggregating function $\alpha(\cdot)$: $R(x, y) = \alpha(R_1(x, y), ..., R_n(x, y))$.
- 3. Determine B'(y) = $R(x, y) \circ A'(x)$ w.r.t. superrelation (inference).

- 1. Which principle is better? FITA or FATI?
- 2. Equivalence of FITA and FATI?

FITA:
$$B'(y) = \beta(B_1'(y), ..., B_n'(y))$$
$$= \beta(R_1(x, y) \circ A'(x), ..., R_n(x, y) \circ A'(x))$$

FATI:
$$B'(y) = R(x, y) \circ A'(x)$$

= $\alpha(R_1(x, y), ..., R_n(x, y)) \circ A'(x)$

→ general case: no further analysis without simplifying assumptions ...

Approximative Reasoning

Lecture 04

AND-connected premises

IF
$$X_1 = A_{11}$$
 AND $X_2 = A_{12}$ AND ... AND $X_m = A_{1m}$ THEN $Y = B_1$

IF
$$X_n = A_{n1}$$
 AND $X_2 = A_{n2}$ AND ... AND $X_m = A_{nm}$ THEN $Y = B_n$

reduce to single premise for each rule k:

$$A_k(x_1,...,x_m) = \min \{A_{k1}(x_1), A_{k2}(x_2),..., A_{km}(x_m)\}$$
 or in general: t-norm

• OR-connected premises

technische universität

dortmund

IF
$$X_1 = A_{11}$$
 OR $X_2 = A_{12}$ OR ... OR $X_m = A_{1m}$ THEN $Y = B_1$

... IF
$$X_n = A_{n1}$$
 OR $X_2 = A_{n2}$ OR ... OR $X_m = A_{nm}$ THEN $Y = B_n$

reduce to single premise for each rule k:

$$A_k(x_1,...,\,x_m) = max\,\{\,A_{k1}(x_1),\,A_{k2}(x_2),\,...,\,A_{km}(x_m)\,\} \qquad \qquad \text{or in general: s-norm}$$

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

special case:
$$A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$$

crisp input!

On the equivalence of FITA and FATI:

FITA:
$$B'(y) = \beta(B_1'(y), ..., B_n'(y))$$
$$= \beta(Imp_1(A_1(x_0), B_1(y)), ..., Imp_n(A_n(x_0), B_n(y)))$$

FATI:
$$B'(y) = R(x, y) \circ A'(x)$$

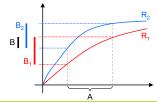
= $\sup_{x \in X} t(A'(x), R(x, y))$ (from now: special case)
= $R(x_0, y)$
= $\alpha(Imp_1(A_1(x_0), B_1(y)), ..., Imp_n(A_n(x_0), B_n(y)))$

FATI = FITA if sup-t-composition with same t-norm, $\alpha(\cdot) = \beta(\cdot)$, same Imp_i(), and ...

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

technische universität


Lecture 04

important:

- if rules of the form IF X is A THEN Y is B interpreted as logical implication
 - \Rightarrow R(x, y) = Imp(A(x), B(y)) makes sense
- we obtain: B'(y) = sup_{x∈X} t(A'(x), R(x, y))

interpretation of output set B'(y):

- B'_k(y) is the set of values that are possible under the particular rule k
- each rule leads to a different restriction of the values that are possible
- must determine set of values that are possible for all rules
- ⇒ resulting fuzzy sets B'_ν(y) obtained from single rules must be mutually intersected!
- \Rightarrow aggregation via $B'(y) = \min \{ B_1'(y), ..., B_n'(y) \}$

Approximative Reasoning

Lecture 04

important:

• if rules of the form IF X is A THEN Y is B are not interpreted as logical implications, then the function Fct(•) in

$$R(x, y) = Fct(A(x), B(y))$$

can be chosen as required for desired interpretation.

- frequent choice (especially in fuzzy control):
 - $R(x, y) = min \{ A(x), B(y) \}$

Mamdani - "implication"

 $-R(x, y) = A(x) \cdot B(y)$

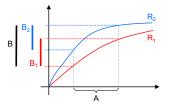
Larsen – "implication"

- ⇒ of course, they are no implications but specific t-norms!
- \Rightarrow thus, if relation R(x, y) is given, then the composition rule of inference

$$B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{ A'(x), R(x, y) \}$$

still can lead to a conclusion via fuzzy logic.

technische universität dortmund


G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

interpretation of output set B'(y):

- B'_k(y) is the set of values that are possible under the particular rule k
- technical system must work for all values that are possible
- each rule may extend the set of the values that are possible
- \Rightarrow resulting fuzzy sets B'_{\(\nu\)}(y) obtained from single rules must be mutually united!
- \Rightarrow aggregation via B'(y) = **max** { B₁'(y), ..., B_n'(y) }

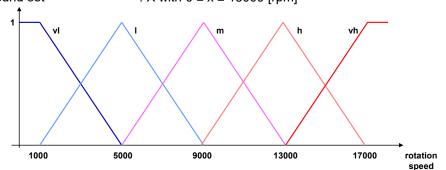
technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

example: [JM96, S. 244ff.]


industrial drill machine → control of cooling supply

modelling

linguistic variable : rotation speed

linguistic terms : very low, low, medium, high, very high

ground set : X with $0 \le x \le 18000 \text{ [rpm]}$

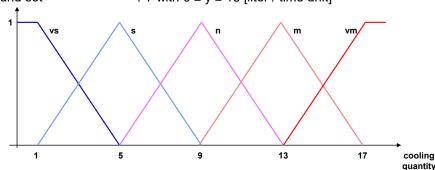
technische universität

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

example: (continued)


industrial drill machine → control of cooling supply

modelling

linguistic variable : cooling quantity

linguistic terms : very small, small, normal, much, very much

ground set : Y with $0 \le y \le 18$ [liter / time unit]

technische universität

Approximative Reasoning

Lecture 04

example: (continued)

industrial drill machine → control of cooling supply

rule base

IF rotation speed IS very low THEN cooling quantity IS very small

low small medium normal high much very high very much

sets C_{vs} , C_{s} , C_{n} , C_{m} , C_{vm} sets S_{vl} , S_{l} , S_{m} , S_{h} , S_{vh} "cooling quantity" "rotation speed"

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Approximative Reasoning

Lecture 04

example: (continued)

industrial drill machine → control of cooling supply

- **1.** input: crisp value $x_0 = 10\ 000\ \text{min}^{-1}$ (not a fuzzy set!)
 - → fuzzyfication = determine membership for each fuzzy set over X

 $C'(y) = aggr \{ C'_n(y), C'_m(y) \} = max \{ min(\frac{3}{4}, C_n(y)), min(\frac{1}{4}, C_m(y)) \}$

This approach can be applied with every t-norm and max-aggregation

- \rightarrow yields S' = (0, 0, $\frac{3}{4}$, $\frac{1}{4}$, 0) via $x \mapsto (S_{vl}(x_0), S_{l}(x_0), S_{m}(x_0), S_{h}(x_0), S_{vh}(x_0))$
- 2. FITA: local inference

$$\Rightarrow$$
 note: Imp(0,a) = 1 (axiom 3)

 S_{vi} : $C'_{vs}(y) = Imp(0, C_{vs}(y))$

 S_{l} : $C'_{s}(y) = Imp(0, C_{s}(y))$

 $S_m: C'_n(y) = Imp(\frac{3}{4}, C_n(y))$

 S_h : $C'_m(y) = Imp(\frac{1}{4}, C_m(y))$

 S_{vh} : $C'_{vm}(y) = Imp(0, C_{vm}(y))$

industrial drill machine → control of cooling supply

 \Rightarrow C'(y) = max { t($\frac{3}{4}$, C_n(y)), t($\frac{1}{4}$, C_m(y)) }

Must we replace logical Imp() by technical relation?

Lecture 04

technische universität dortmund

example: (continued)

3. aggregation:

Remark:

Approximative Reasoning

Approximative Reasoning

Lecture 04

example: (continued)

industrial drill machine → control of cooling supply

in case of control task typically **no logic-based interpretation**:

- → max-aggregation and
- \rightarrow relation R(x,y) not interpreted as implication.

often: R(x,y) = min(A(x), B(y))"Mamdani controller"

2. FITA: local inference

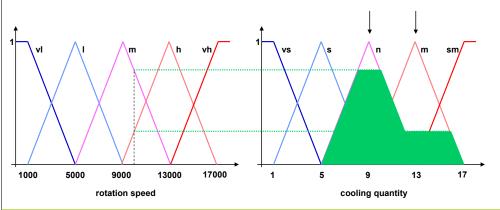
$$\begin{array}{lll} S_{vl} \colon & C'_{vs}(y) &= min(\ 0,\ C_{vs}(y)\) &= 0 \\ \\ S_{l} \colon & C'_{s}(y) &= min(\ 0,\ C_{s}(y)\) &= 0 \\ \\ S_{m} \colon & C'_{n}(y) &= min(\sqrt[3]{4},\ C_{n}(y)\) &\geq 0 \\ \\ S_{h} \colon & C'_{m}(y) &= min(\sqrt[4]{4},\ C_{m}(y)\) &\geq 0 \end{array} \right\} \Rightarrow \\ \text{since min}(0,a) = 0 \text{ and max-aggr.} \\ \text{we only need to consider C_{n} and} \\ \end{array}$$

 S_{vh} : $C'_{vm}(y) = min(0, C_{vm}(y)) = 0$

we only need to consider C_n and C_m

technische universität

→ graphical illustration

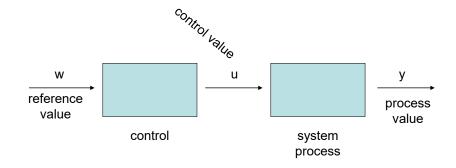

G. Rudolph: Computational Intelligence • Winter Term 2024/25

technische universität dortmund

example: (continued)

industrial drill machine → control of cooling supply

 $C'(y) = \max \{ \min \{ \frac{3}{4}, C_n(y) \}, \min \{ \frac{1}{4}, C_m(y) \} \}, x_0 = 10\ 000 \text{ [rpm]}$


technische universität dortmund

Fuzzy Control

G. Rudolph: Computational Intelligence • Winter Term 2024/25 21

Lecture 04

open loop control

assumption: undisturbed operation ⇒ process value = reference value

technische universität

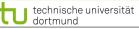
G. Rudolph: Computational Intelligence • Winter Term 2024/25

Fuzzy Control

Lecture 04

open and closed loop control:

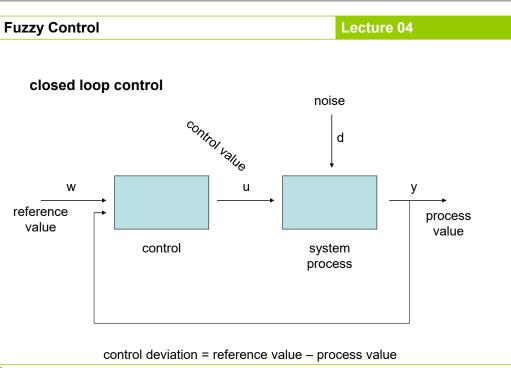
affect the dynamical behavior of a system in a desired manner


• open loop control

control is aware of reference values and has a model of the system ⇒ control values can be adjusted, such that process value of system is equal to reference value

problem: noise! ⇒ deviation from reference value not detected

closed loop control


now: detection of deviations from reference value possible (by means of measurements / sensors) and new control values can take into account the amount of deviation

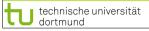
■ technische universität

dortmund

23

Fuzzy Control

Lecture 04


required:

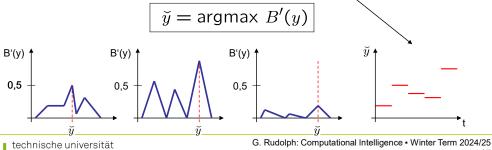
model of system / process

- → as differential equations or difference equations (DEs)
- → well developed theory available

so, why fuzzy control?

- if there exists no process model in form of DEs etc. (operator/human being has realized control by hand)
- if process with high-dimensional nonlinearities → no classic methods available
- if control goals are vaguely formulated ("soft" changing gears in cars)

G. Rudolph: Computational Intelligence • Winter Term 2024/25


Lecture 04

defuzzification

Fuzzy Control

Def: rule k active $\Leftrightarrow A_k(x_0) > 0$

- maximum method
 - only active rule with largest activation level is taken into account
 - → suitable for pattern recognition / classification
 - → decision for a single alternative among finitely many alternatives
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - if used for control: discontinuous curve of output values (leaps)

Fuzzy Control

Lecture 04

fuzzy description of control behavior

IF X is
$$A_1$$
, THEN Y is B_1
IF X is A_2 , THEN Y is B_2
IF X is A_3 , THEN Y is B_3
...
IF X is A_n , THEN Y is B_n
 $X ext{ is } A'$
Y is B'

similar to approximative reasoning

but fact A' is not a fuzzy set but a crisp input

→ actually, it is the current process value

fuzzy controller executes inference step

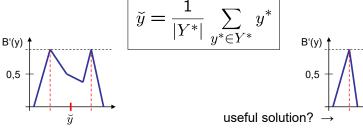
→ yields fuzzy output set B'(y)

but crisp control value required for the process / system

→ defuzzification (= "condense" fuzzy set to crisp value)

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2024/25

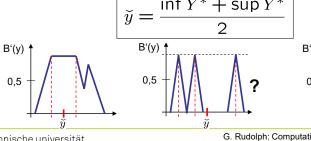

Fuzzy Control

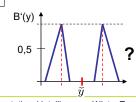
Lecture 04

defuzzification

 $Y^* = \{ y \in Y : B'(y) = hgt(B') \}$

- maximum mean value method
 - all active rules with largest activation level are taken into account
 - → interpolations possible, but need not be useful
 - → obviously, only useful for neighboring rules with max. activation
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - if used in control: incontinuous curve of output values (leaps)




technische universität

defuzzification

 $Y^* = \{ y \in Y : B'(y) = hgt(B') \}$

- center-of-maxima method (COM)
 - only extreme active rules with largest activation level are taken into account
 - → interpolations possible, but need not be useful
 - → obviously, only useful for neighboring rules with max. activation level
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - in case of control: incontinuous curve of output values (leaps)

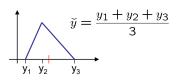
technische universität dortmund

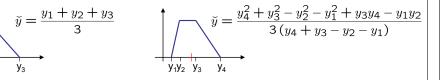
G. Rudolph: Computational Intelligence • Winter Term 2024/25

Lecture 04

Excursion: COG

Fuzzy Control


$$\widetilde{y} = \frac{\int y \cdot B'(y) \, dy}{\int B'(y) \, dy}$$



pendant in probability theory: expectation value

triangle:

trapezoid:

technische universität

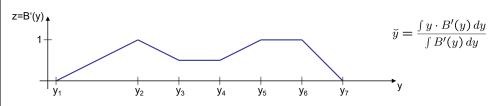
G. Rudolph: Computational Intelligence • Winter Term 2024/25

Lecture 04

defuzzification

- Center of Gravity (COG)
 - all active rules are taken into account
 - → but numerically expensiveonly valid for HW solution, today!
 - → borders cannot appear in output (∃ work-around)
 - if only single active rule: independent from activation level
 - continuous curve for output values

$$\widetilde{y} = \frac{\int y \cdot B'(y) \, dy}{\int B'(y) \, dy}$$


technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Fuzzy Control

technische universität

Lecture 04

assumption: fuzzy membership functions piecewise linear

- output set B'(y) represented by sequence of points $(y_1, z_1), (y_2, z_2), ..., (y_n, z_n)$
- ⇒ area under B'(y) and weighted area can be determined additively piece by piece
- \Rightarrow linear equation z = m y + b \rightarrow insert (y_i, z_i) and (y_{i+1}, z_{i+1})
- ⇒ yields m and b for each of the n-1 linear sections

$$\Rightarrow F_i = \int_{y_i}^{y_{i+1}} (m \, y + b) \, dy = \frac{m}{2} (y_{i+1}^2 - y_i^2) + b(y_{i+1} - y_i)$$

$$\Rightarrow G_i = \int_{y_i}^{y_{i+1}} y \, (m \, y + b) \, dy = \frac{m}{3} (y_{i+1}^3 - y_i^3) + \frac{b}{2} (y_{i+1}^2 - y_i^2)$$

$$\breve{y} = \frac{\sum_i G_i}{\sum_i F_i}$$

Fuzzy Control

Lecture 04

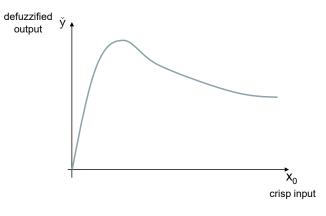
Defuzzification

- Center of Area (COA)
 - developed as an approximation of COG
 - let \hat{y}_k be the COGs of the output sets $B'_k(y)$:

$$\tilde{y} = \frac{\sum_{k} A_k(x_0) \cdot \hat{y}_k}{\sum_{k} A_k(x_0)}$$

how to:

assume that fuzzy sets $A_k(x)$ and $B_k(x)$ are triangles or trapezoids let x₀ be the crisp input value for each fuzzy rule "IF Ak is X THEN Bk is Y" determine $B'_k(y) = R(A_k(x_0), B_k(y))$, where R(.,.) is the relation find \hat{y}_k as center of gravity of $B'_k(y)$



G. Rudolph: Computational Intelligence • Winter Term 2024/25

Fuzzy Control

Lecture 04

Putting all together:

→ map controller (in german: *Kennfeldregler*)

