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Plan for Today

● Fuzzy relations

● Fuzzy logic

 Linguistic variables and terms

 Inference from fuzzy statements



Lecture 03

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
3

Fuzzy Relations
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Fuzzy Relations

Definition

Fuzzy relation = fuzzy set over crisp cartesian product ■

→ each tuple (x1, ..., xn) has a degree of membership to relation

→ degree of membership expresses 
strength of relationship between elements of tuple

appropriate representation: n-dimensional membership matrix

example: Let X = { Bejing, New York, Dortmund } and Y = { New York, Paris }.

relation R = “very far away” relation R New York Paris
Bejing 1.0 0.9
New York 0.0 0.7
Dortmund 0.6 0.3

membership matrix
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Fuzzy Relations

Definition

Let R(X, Y) be a fuzzy relation with membership matrix R. The inverse fuzzy relation
to R(X,Y), denoted R-1(Y, X), is a relation on Y x X with membership matrix R‘.  ■

Remark: R‘ is the transpose of membership matrix R.

Evidently: (R-1)-1 = R  since (R‘)‘ = R

Definition

Let P(X, Y) and Q(Y, Z) be fuzzy relations. The operation ◦ on two relations, denoted
P(X, Y) ◦ Q(Y, Z), is termed max-min-composition iff

R(x, z) = (P ◦ Q)(x, z) = max min { P(x, y), Q(y, z) }.
y ∈ Y ■
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Fuzzy Relations

Theorem

a) max-min composition on relations is associative.

b) max-min composition on relations is not commutative.

c) ( P(X,Y) ◦ Q(Y,Z) )-1 = Q-1(Z,Y) ◦ P-1(Y, X).

membership matrix of max-min composition 
determinable via “fuzzy matrix multiplication”:  R = P ◦ Q

fuzzy matrix multiplication

crisp matrix multiplication

row i

column j

P             Q
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max-prod composition

Fuzzy Relations

generalization: sup-t composition

e.g.: t(a,b) = min{a, b} ⇒ max-min-composition

t(a,b) = a · b ⇒ max-prod-composition

where t(.,.) is a t-norm

further methods for realizing compositions of relations: 
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Binary fuzzy relations on X x X : properties

● reflexive ⇔ ∀ x ∈ X : R(x,x) = 1

● irreflexive ⇔ ∃ x ∈ X : R(x,x) < 1

● antireflexive ⇔ ∀ x ∈ X : R(x,x) < 1

● symmetric ⇔ ∀ (x,y) ∈ X x X : R(x,y) = R(y,x)

● asymmetric ⇔ ∃ (x,y) ∈ X x X : R(x,y) ≠ R(y,x)

● antisymmetric ⇔ ∀ (x,y) ∈ X x X : R(x,y) ≠ R(y,x)

● transitive ⇔ ∀ (x,z) ∈ X x X : R(x,z) ≥ max min { R(x,y), R(y,z) }

● intransitive ⇔ ∃ (x,z) ∈ X x X : R(x,z) < max min { R(x,y), R(y,z) }

● antitransitive ⇔ ∀ (x,z) ∈ X x X : R(x,z) < max min { R(x,y), R(y,z) }

y ∈ X

y ∈ X

y ∈ X

actually, here: max-min-transitivity (→ in general: sup-t-transitivity)

Fuzzy Relations
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binary fuzzy relation on X x X: example

Let X be a subset of all cities in Germany.

Fuzzy relation R is intended to represent the concept of „very close to“.

● R(x,x) = 1, since every city is certainly very close to itself.

● R(x,y) = R(y,x): if city x is very close to city y, then also vice versa.

⇒ intransitive

⇒ symmetric

⇒ reflexive

Fuzzy Relations

R DU E DO HA
DU 1 0.7 0.5 0.4

E 0.7 1 0.8 0.8

DO 0.5 0.8 1 0.9

HA 0.4 0.8 0.9 1

●

R(DO,DU) = 0.5 < max min{R(DO,y), R(y, DU)} = 0.7 
y

DOE

HA

DU
Duisburg Essen Dortmund

Hagen

R(E  ,DO) = 0.8 ≥ max min{R(E   ,y), R(y, DO)} = 0.8 
y
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crisp:
relation R is equivalence relation , R reflexive, symmetric, transitive 

fuzzy:
relation R is similarity relation , R reflexive, symmetric, (max-min-) transitive

Fuzzy Relations

examples:

● equivalence relation: farm animals
cattle, pigs, chicken, … 
R(cow, ox) = 1  but  R(cow, hen) = 0 

● similarity relation: farm animals
cattle, pigs, chicken, horse, donkey, mule, … 
R(mule, (male) donkey) = 0.5  and R(mule, (female) horse) = 0.5 

What about
hybrids?
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linguistic variable:

variable that can attain several values of lingustic / verbal nature

e.g.: color can attain values red, green, blue, yellow, …

values (red, green, …) of linguistic variable are called linguistic terms

linguistic terms are associated with fuzzy sets

1

λ
525450 600

[nm]

green

green-yellowblue-
green

green-blue

Fuzzy Logic
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fuzzy proposition

p: temperature is  high

linguistic
variable (LV)

linguistic
term (LT)

● LV may be associated with several LT : high, medium, low, … 

● high, medium, low temperature are fuzzy sets 
over numerical scale of crisp temperatures

● trueness of fuzzy proposition „temperature is high“
for a given concrete crisp temperature value v 
is interpreted as equal to the degree of membership high(v) 
of the fuzzy set high

Fuzzy Logic
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fuzzy proposition

p:  V is F

linguistic
variable (LV)

linguistic
term (LT)

actually:

p: V is F(v)

and

T(p) = F(v) for a concrete crisp value v

trueness(p)

establishes 
connection between 

degree of membership
of a fuzzy set and the 

degree of trueness
of a fuzzy proposition

Fuzzy Logic
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fuzzy proposition

p: IF heating is hot, THEN energy consumption is high

LV LT LV LT

expresses relation between

a) temperature of heating and 

b) quantity of energy consumption

p: (heating, energy consumption) ∈ R

relation

Fuzzy Logic
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fuzzy proposition

p: IF X is A, THEN Y is B

How can we determine / express degree of trueness T(p) ?

● For crisp, given values x, y we know A(x) and B(y)

● A(x) and B(y) must be processed to single value via relation R 

● R( x, y ) = function( A(x), B(y) ) is fuzzy set over X x Y

● as before: interprete T(p) as degree of membership R(x,y)

LV LT LV LT

Fuzzy Logic
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fuzzy proposition

p: IF X is A, THEN Y is B

A is fuzzy set over X 

B is fuzzy set over Y

R is fuzzy set over X x Y

∀ (x,y) ∈ X x Y: R(x, y) = Imp( A(x), B(y) )

What is Imp(·,·) ?

⇒ „appropriate“ fuzzy implication [0,1] x [0,1] → [0,1]

Fuzzy Logic
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assumption: we know an „appropriate“ Imp(a,b).

How can we determine the degree of trueness T(p) ?

y1 y2 y3

0.1 0.8 0.4

x1 x2

0.5 0.9

R y1 y2 y3

x1 0.6 1.0 0.9

x2 0.2 0.9 0.5

example: (discrete case)

let Imp(a, b) = min{ 1, 1 – a + b } and consider fuzzy sets

A: B:

⇒

z.B. 
R(x2, y1) = Imp(A(x2), B(y1)) = Imp(0.9, 0.1) =

min{1.0, 1.0 - 0.9 + 0.1 }  = 0.2

and T(p) for (x2,y1) is R(x2, y1) = 0.2                ■

Fuzzy Logic
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example: (continuous case)

let Imp(a, b) = min{ 1, 1 – a + b } and consider fuzzy sets

⇒

Fuzzy Logic
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Fuzzy Logic

toward inference from fuzzy statements:

crisp case:

functional
relationship

x

y
f(x)

x

y
f(x)

x0

f(x0)

A

B

● let R = { (x, y) : y = f(x) }  for a function f:    → 

IF X = { x0 } THEN Y = { f(x0) }

● IF X ∈ A THEN Y ∈ B = { y ∈ : y = f(x), x ∈ A }
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Fuzzy Logic

toward inference from fuzzy statements:

crisp case:

relational 
relationship

x
A

● let relationship between x and y be a relation R on 

IF X = x0 THEN Y ∈ B = { y ∈ : (x0, y) ∈ R } 

● IF X ∈ A THEN Y ∈ B = { y ∈ : (x, y) ∈ R,  x ∈ A }

y

x

R(x,y)

x0

R(x,y)

R(x0,y)B B

y
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Fuzzy Logic

toward inference from fuzzy statements:

IF X ∈ A THEN Y ∈ B = { y ∈ : (x, y) ∈ R,  x ∈ A }

also expressible via characteristic functions of sets A, B, R:

x
A

R(x,y)

B

B(y) = 1  iff ∃ x:  A(x) = 1  and R(x, y) = 1  

⇔ ∃ x:  min{ A(x), R(x, y) } = 1  

⇔ maxx∈ min{ A(x), R(x, y) } = 1  

∀y ∈ : B(y) = maxx∈ min { A(x), R(x, y) }

y
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composition rule of inference (in matrix form): BT = A ◦ R

Fuzzy Logic

inference from fuzzy statements

∀y ∈ : B(y) = maxx∈ min { A(x), R(x, y) }

∀y ∈ : B‘(y) = supx∈ min { A‘(x), R(x, y) }

characteristic functions

membership functions

Now: A‘, B‘ fuzzy sets over resp. 

Assume:  R(x,y)  and A‘(x)  are given.

Idea: Generalize characteristic function of B(y) to membership function B‘(y)

Note: 
A‘(x) is not the derivative of A(x)!
It is the membership function
of fuzzy set A‘.
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● conventional: 
modus ponens

● fuzzy: 
generalized modus ponens (GMP)

a ⇒ b
a

b

IF X is A, THEN Y is B
X is A‘

Y is B‘

IF heating is hot, THEN energy consumption is high
heating is warm

energy consumption is normal

e.g.:

Fuzzy Logic

inference from fuzzy statements
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example: GMP

consider

with the rule: IF X is A THEN Y is B            using

x1 x2 x3

0.5 1.0 0.6

y1 y2

1.0 0.4

A: B: R y1 y2

x1 1.0 0.9

x2 1.0 0.4

x3 1.0 0.8

⇒

given fact x1 x2 x3

0.6 0.9 0.7

A‘:

Imp(a,b) = min{1, 1-a+b }

thus:   A‘ ◦ R = B‘

with max-min-composition ■

Fuzzy Logic
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● conventional: 
modus tollens

● fuzzy: 
generalized modus tollens (GMT)

IF X is A, THEN Y is B
Y is B‘

X is A‘

IF heating is hot, THEN energy consumption is high
energy consumption is normal

heating is warm

e.g.:

a ⇒ b
b

a

Fuzzy Logic

inference from fuzzy statements
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example: GMT

consider

with the rule: IF X is A THEN Y is B

x1 x2 x3

0.5 1.0 0.6

y1 y2

1.0 0.4

A: B:

R‘ x1 x2 x3

y1 1.0 1.0 1.0

y2 0.9 0.4 0.8

⇒
given fact y1 y2

0.9 0.7

B‘:

using Imp(a,b) = min{1, 1-a+b }

thus:   B‘ ◦ R-1 = A‘

with max-min-composition
■

Fuzzy Logic
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inference from fuzzy statements

● conventional: 
hypothetic syllogism

● fuzzy: 
generalized HS

IF X is A, THEN Y is B
IF Y is B, THEN Z is C

IF X is A, THEN Z is C

IF heating is hot, THEN energy consumption is high
IF energy consumption is high, THEN living is expensive

IF heating is hot, THEN living is expensive

e.g.:

a ⇒ b
b ⇒ c

a ⇒ c

Fuzzy Logic
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example: GHS

let fuzzy sets A(x), B(y), C(z) be given

⇒ determine the three relations according to Imp function

R1(x,y) = Imp(A(x),B(y))
R2(y,z) = Imp(B(y),C(z))
R3(x,z) = Imp(A(x),C(z))

and express them as matrices R1, R2, R3

We say:

GHS is valid if R1 ◦ R2 = R3

Fuzzy Logic
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So, ... what makes sense for Imp(·,·) ?

Imp(a,b) ought to express fuzzy version of implication (a ⇒ b) 

conventional:    a ⇒ b    identical to a  ∨ b

But how can we calculate with fuzzy “boolean” expressions?

request: must be compatible to crisp version (and more) for a,b ∈ { 0, 1 }

a b a ∧ b t(a,b)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

a b a ∨ b s(a,b)
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

a a c(a)
0 1 1
1 0 0

Fuzzy Logic
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So, ... what makes sense for Imp(·,·) ?

1st approach: S implications

conventional:    a ⇒ b    identical to a ∨ b

fuzzy: Imp(a, b) = s( c(a), b)

2nd approach: R implications
conventional:    a ⇒ b    identical to max{ x ∈ {0,1}:  a ∧ x ≤ b }

fuzzy: Imp(a, b) = max{ x ∈[0,1] : t(a, x) ≤ b }

fuzzy:               Imp(a, b) = s( c(a), t(a, b) )

3rd approach: QL implications

conventional:    a ⇒ b    identical to a ∨ b  ≡ a ∨ (a ∧ b)        law of absorption

(dual tripel ?)

Fuzzy Logic
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example: S implication Imp(a, b) = s( cs(a), b) (cs : std. complement)

1. Kleene-Dienes implication

s(a, b) = max{ a, b } (standard) Imp(a,b) = max{ 1-a, b }

2. Reichenbach implication

s(a, b) = a + b – ab (algebraic sum) Imp(a, b) = 1 – a + ab

3. Łukasiewicz implication

s(a, b) = min{ 1, a + b } (bounded sum) Imp(a, b) = min{ 1, 1 – a + b }

Fuzzy Logic
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example: R implicationen Imp(a, b) = max{ x ∈[0,1] : t(a, x) ≤ b }

1. Gödel implication

t(a, b) = min{ a, b } (std.) Imp(a, b) =

2. Goguen implication

t(a, b) = ab (algeb. product) Imp(a, b) = 

3. Łukasiewicz implication

t(a, b) = max{ 0, a + b – 1 }   (bounded diff.) Imp(a, b) = min{ 1, 1 – a + b }

Fuzzy Logic
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example: QL implication Imp(a, b) = s( c(a), t(a, b) )

1. Zadeh implication

t(a, b) = min { a, b } (std.) Imp(a, b) = max{ 1 – a, min{a, b} }
s(a,b) = max{ a, b } (std.)

2. „NN“ implication  (Klir/Yuan 1994)

t(a, b) = ab (algebr. prd.) Imp(a, b) = 1 – a + a2b
s(a,b) = a + b – ab (algebr. sum)

3. Kleene-Dienes implication

t(a, b) = max{ 0, a + b – 1 }   (bounded diff.)   Imp(a, b) = max{ 1-a, b }
s(a,b) = min { 1, a + b) (bounded sum)

Fuzzy Logic
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axioms for fuzzy implications

1. a ≤ b  implies Imp(a, x) ≥ Imp(b, x) monotone in 1st argument

2. a ≤ b  implies Imp(x, a) ≤ Imp(x, b) monotone in 2nd argument

3. Imp(0, a) = 1 dominance of falseness

4. Imp(1, b) = b neutrality of trueness

5. Imp(a, a) = 1 identity

6. Imp(a, Imp(b, x) ) = Imp(b, Imp(a, x) ) exchange property

7. Imp(a, b) = 1 iff a ≤ b boundary condition

8. Imp(a, b) = Imp( c(b), c(a) ) contraposition

9. Imp(·,·) is continuous continuity

Fuzzy Logic
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Caution!

Not all S-, R-, QL- implications obey all axioms for fuzzy implications!

Fuzzy Logic

Implication Valid Axioms

Kleene-Dienes 1  2  3  4  – 6  – 8  9

Reichenbach 1  2  3  4  – 6  – 8  9

Łukasiewicz 1  2  3  4  5  6  7  8  9

Gödel 1  2  3  4  5  6  7  – –

Goguen 1  2  3  4  5  6  7  – 9

Zadeh 1  2  3  4  – – – – 9

Klir-Yuan – 2  3  4  – – – – 9

←
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characterization of fuzzy implication

Theorem:
Imp: [0,1] x [0,1] → [0,1] satisfies axioms 1 - 9 for fuzzy implications
for a certain fuzzy complement c(·) ⇔

∃ strictly monotone increasing, continuous function f: [0,1] → [0, ∞) with

● f(0) = 0

● ∀a, b ∈ [0,1]: Imp(a, b) = f-1( min{ f(1) – f(a) + f(b), f(1)} )

● ∀a ∈ [0,1]: c(a) = f-1( f(1) – f(a) )

Proof: Smets & Magrez (1987), p. 337f. ■

examples: (in tutorial)

Fuzzy Logic
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choosing an „appropriate“ fuzzy implication ...

apt quotation: (Klir & Yuan 1995, p. 312)

„To select an appropriate fuzzy implication for approximate reasoning
under each particular situation is a difficult problem.“

guideline:
GMP, GMT, GHS should be compatible with MP, MT, HS 
for fuzzy implication in calculations with relations:
B(y) = sup { t( A(x), Imp( A(x), B(y) ) ) : x ∈ X }

example:
Gödel implication for t-norm = bounded difference

Fuzzy Logic
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