

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Fuzzy relations
- Fuzzy logic
	- **Example Linguistic variables and terms**
	- **Inference from fuzzy statements**

relations with conventional sets $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_n$:

 $R(\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_n) \subseteq \mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_n$

notice that cartesian product is a set! \Rightarrow all set operations remain valid!

crisp membership function (of x to relation R)

$$
R(x_1, x_2, \dots, x_n) = \begin{cases} 1 & \text{if } (x_1, x_2, \dots, x_n) \in R \\ 0 & \text{otherwise} \end{cases}
$$

Lecture 03

Definition

Fuzzy relation = fuzzy set over crisp cartesian product $\mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_n$

- \rightarrow each tuple (x₁, ..., x_n) has a degree of membership to relation
- \rightarrow degree of membership expresses *strength of relationship* between elements of tuple

appropriate representation: n-dimensional membership matrix

example: Let $X = \{$ Bejing, New York, Dortmund $\}$ and $Y = \{$ New York, Paris $\}$.

Definition

Let R(X, Y) be a fuzzy relation with membership matrix R. The *inverse fuzzy relation* to R(X,Y), denoted R⁻¹(Y, X), is a relation on Y x X with membership matrix R'. \blacksquare

Remark: R' is the transpose of membership matrix R.

Evidently: $(R^{-1})^{-1} = R$ since $(R')' = R$

Definition

Let $P(X, Y)$ and $Q(Y, Z)$ be fuzzy relations. The operation \circ on two relations, denoted P(X, Y) ◦ Q(Y, Z), is termed *max-min-composition* iff

$$
R(x, z) = (P \circ Q)(x, z) = \max_{y \in Y} \min \{ P(x, y), Q(y, z) \}.
$$

Fuzzy Relations

Theorem

- a) max-min composition on relations is associative.
- b) max-min composition on relations is not commutative.
- c) $(P(X,Y) \circ Q(Y,Z))^{-1} = Q^{-1}(Z,Y) \circ P^{-1}(Y,X)$.

membership matrix of max-min composition determinable via "fuzzy matrix multiplication": $R = P \circ Q$

fuzzy matrix multiplication
$$
r_{ij} = \max_{k} \min\{p_{ik}, q_{kj}\}
$$

crisp matrix multiplication $r_{ij} = \sum_{k} p_{ik} \cdot q_{kj}$

columna i

further methods for realizing compositions of relations:

max-prod composition

$$
(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}
$$

generalization: sup-t composition

$$
(P \circ Q)(x, z) = \sup_{y \in \mathcal{Y}} \{ t(P(x, y), Q(y, z)) \}, \text{ where } t(.,.) \text{ is a t-norm}
$$

e.g.:
$$
t(a,b) = min\{a, b\}
$$
 \Rightarrow max-min-composition
 $t(a,b) = a \cdot b$ \Rightarrow max-product-composition

technische universität dortmund

Binary fuzzy relations on X x X : properties

actually, here: max-min-transitivity (\rightarrow in general: sup-t-transitivity)

8

binary fuzzy relation on X x X: example

Let **X** be a subset of all cities in Germany.

Fuzzy relation R is intended to represent the concept of "very close to".

- \bullet R(x,x) = 1, since every city is certainly very close to itself. ⇒ **reflexive**
- $R(x,y) = R(y,x)$: if city x is very close to city y, then also vice versa. ⇒ **symmetric**

⇒ **intransitive**

y

crisp:

relation R is equivalence relation, R reflexive, symmetric, transitive

fuzzy:

relation R is similarity relation, R reflexive, symmetric, (max-min-) transitive

examples:

● *equivalence relation*: farm animals cattle, pigs, chicken, … R (cow, ox) = 1 but R (cow, hen) = 0

● *similarity relation*: farm animals cattle, pigs, chicken, horse, donkey, mule, … $R(mule, (male) donkey) = 0.5 and R(mule, (female) horse) = 0.5$

linguistic variable:

variable that can attain several values of lingustic / verbal nature e.g.: **color** can attain values **red**, **green**, **blue**, **yellow**, …

values (red, green, …) of linguistic variable are called **linguistic terms**

linguistic terms are associated with fuzzy sets

11

- LV may be associated with several LT : *high, medium, low, …*
- *high, medium, low* temperature are fuzzy sets over numerical scale of crisp temperatures
- trueness of fuzzy proposition "temperature is high" for a given **concrete crisp** temperature value v is interpreted as equal to the degree of membership *high*(v) of the fuzzy set *high*

establishes connection between *degree of membership* of a fuzzy set and the *degree of trueness* of a fuzzy proposition

p: IF *heating* is *hot,* THEN *energy consumption* is *high* LV LT LV LT

expresses relation between

- a) temperature of heating and
- b) quantity of energy consumption

p: (*heating, energy consumption*) ∈ R relation


```
p: IF X is A, THEN Y is B
  LV LT LV LT
```
How can we determine / express degree of trueness T(p) ?

- For crisp, given values x, y we know $A(x)$ and $B(y)$
- $A(x)$ and B(y) must be processed to single value via relation R
- $R(x, y)$ = function(A(x), B(y)) is fuzzy set over X x Y
- as before: interprete $T(p)$ as degree of membership $R(x,y)$

- p: IF *X* is A*,* THEN *Y* is B
- A is fuzzy set over X
- B is fuzzy set over Y
- R is fuzzy set over X x Y
- \forall (x,y) \in X x Y: R(x, y) = lmp(A(x), B(y))

What is Imp(**·**,**·**) ? \Rightarrow "appropriate" fuzzy implication $[0,1] \times [0,1] \rightarrow [0,1]$

assumption: we know an "appropriate" Imp(a,b).

How can we determine the *degree of trueness* T(p) ?

example: (discrete case)

let $Imp(a, b) = min\{ 1, 1 - a + b \}$ and consider fuzzy sets

A:
$$
\begin{array}{|c|c|}\n \hline\n x_1 & x_2 \\
\hline\n 0.5 & 0.9\n \end{array}
$$
 B:

z.B.
R(x₂, y₁) =
$$
Imp(A(x_2), B(y_1)) = Imp(0.9, 0.1) =
$$

min{1.0, 1.0 - 0.9 + 0.1} = 0.2

and T(p) for (x_2, y_1) is R(x_2, y_1) = 0.2

⇒

Fuzzy Logic

example: (continuous case)

let $Imp(a, b) = min\{ 1, 1 - a + b \}$ and consider fuzzy sets

technische universität dortmund

Fuzzy Logic

toward inference from fuzzy statements:

• let R = { (x, y) : $y = f(x)$ } for a function f: $\mathbb{R} \rightarrow \mathbb{R}$

IF $X = \{ x_0 \}$ THEN $Y = \{ f(x_0) \}$

• IF $X \in A$ THEN $Y \in B = \{ y \in \mathcal{Y} : y = f(x), x \in A \}$

toward inference from fuzzy statements:

 \bullet let relationship between x and y be a relation R on $\mathcal{X} \times \mathcal{Y}$

IF $X = x_0$ THEN $Y \in B = \{ y \in \mathcal{Y} : (x_0, y) \in R \}$

• IF $X \in A$ THEN $Y \in B = \{ y \in \mathcal{Y} : (x, y) \in R, x \in A \}$

toward inference from fuzzy statements:

IF $X \in A$ THEN $Y \in B = \{ y \in \mathcal{Y} : (x, y) \in R, x \in A \}$

also expressible via characteristic functions of sets A, B, R:

$$
B(y) = 1 \text{ iff } \exists x: A(x) = 1 \text{ and } R(x, y) = 1
$$
\n
$$
\Leftrightarrow \exists x: \min\{A(x), R(x, y)\} = 1
$$
\n
$$
\Leftrightarrow \max_{x \in \mathcal{X}} \min\{A(x), R(x, y)\} = 1
$$
\n
$$
\text{B}
$$

$$
\forall y \in \mathcal{Y}: B(y) = max_{x \in \mathcal{X}} \min \{ A(x), R(x, y) \}
$$

A

x

inference from fuzzy statements

Now: A', B' fuzzy sets over $\mathcal X$ resp. $\mathcal Y$

Assume: $R(x,y)$ and $A'(x)$ are given.

Note: A'(x) is **not** the derivative of A(x)! It is the membership function of fuzzy set A'.

Idea: Generalize characteristic function of $B(y)$ to membership function $B'(y)$

$$
\forall y \in \mathcal{Y}: B(y) = max_{x \in \mathcal{X}} min \{ A(x), R(x, y) \}
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
\forall y \in \mathcal{Y}: B'(y) = sup_{x \in \mathcal{X}} min \{ A'(x), R(x, y) \}
$$

characteristic functions

membership functions

composition rule of inference (in matrix form): **BT = A** ◦ **R**

inference from fuzzy statements

● fuzzy: generalized modus ponens (GMP) IF *X* is A, THEN *Y* is B *X* is A'

Y is B'

IF *heating* is hot, THEN *energy consumption* is high *heating* is warm e.g.:

energy consumption is normal

Fuzzy Logic

Lecture 03

example: GMP

consider

with the rule: IF *X* is A THEN *Y* is B using

 $Imp(a,b) = min\{1, 1-a+b\}$

given fact $A': \begin{array}{|c|c|c|c|c|} \hline x_1 & x_2 & x_3 \end{array}$ 0.6 | 0.9 | 0.7 A^{\prime} : thus: $A' \circ R = B'$ thus: $A' \circ R = B'$
with max-min-composition $(0.6 \t 0.9 \t 0.7) \circ \begin{pmatrix} 1.0 \t 1.0 \t 0.4 \t 1.0 \t 0.8 \end{pmatrix} = (0.9 \t 0.7)$

inference from fuzzy statements

IF *heating* is hot, THEN *energy consumption* is high *energy consumption* is normal e.g.:

heating is warm

example: GMT

consider

with the rule: IF *X* is A THEN *Y* is B

given fact

$$
B': \begin{array}{|c|c|} \hline y_1 & y_2 \\ \hline 0.9 & 0.7 \\ \hline \end{array}
$$

thus: B'
$$
\circ
$$
 R⁻¹ = A' (0.9 0.7) \circ $\begin{pmatrix} 1.0 & 1.0 & 1.0 \\ 0.9 & 0.4 & 0.8 \end{pmatrix} = (0.9 0.9 0.9)$

with max-min-composition

■

inference from fuzzy statements

● fuzzy: generalized HS IF *X* is A, THEN *Y* is B IF *Y* is B, THEN *Z* is C

IF X is A, THEN Z is C

IF *heating* is hot, THEN *energy consumption* is high IF *energy consumption* is high, THEN *living* is expensive e.g.:

IF *heating* is hot, THEN *living* is expensive

technische universität dortmund

example: GHS

let fuzzy sets $A(x)$, $B(y)$, $C(z)$ be given

 \Rightarrow determine the three relations according to Imp function

 $R_1(x,y) = Imp(A(x),B(y))$ $R_2(y, z) = Imp(B(y), C(z))$ $R_3(x, z) = Imp(A(x), C(z))$

and express them as matrices R_1 , R_2 , R_3

We say:

GHS is valid if $R_1 \circ R_2 = R_3$

So, ... what makes sense for $Imp(\cdot, \cdot)$? Imp(a,b) ought to express fuzzy version of implication (a \Rightarrow b) conventional: $a \Rightarrow b$ identical to \overline{a} \vee b

But how can we calculate with fuzzy "boolean" expressions?

request: must be compatible to crisp version (and more) for $a,b \in \{0, 1\}$

So, ... what makes sense for Imp(·,·) ?

1st approach: S implications

conventional: $a \Rightarrow b$ identical to $\overline{a} \vee b$

fuzzy: $Imp(a, b) = s(c(a), b)$

2nd approach: R implications

conventional: $a \Rightarrow b$ identical to max{ $x \in \{0, 1\}$: $a \wedge x \le b$ }

fuzzy: $Imp(a, b) = max\{ x \in [0, 1] : t(a, x) \le b \}$

3rd approach: QL implications

conventional: $a \Rightarrow b$ identical to $\overline{a} \vee b = \overline{a} \vee (a \wedge b)$ law of absorption

fuzzy: $Imp(a, b) = s(c(a), t(a,$

$$
b))
$$
 (dual triplel ?)

example: S implication Imp(a, b) = $s(c_s(a), b)$ (c_s: std. complement)

- 1. Kleene-Dienes implication
	- $s(a, b) = \max\{a, b\}$ (standard) $\{mp(a, b) = \max\{1-a, b\}$
- 2. Reichenbach implication

 $s(a, b) = a + b - ab$ (algebraic sum) $lmp(a, b) = 1 - a + ab$

3. Łukasiewicz implication

 $s(a, b) = min\{1, a + b\}$ (bounded sum) $Imp(a, b) = min\{1, 1 - a + b\}$

example: R implicationen $\text{Imp}(a, b) = \text{max}\{x \in [0, 1]: t(a, x) \le b\}$

1. Gödel implication

t(a, b) = min{ a, b } (std.) Imp(a, b) = $\begin{cases} 1, & \text{if } a \leq b \\ b, & \text{else} \end{cases}$

- 2. Goguen implication
	- t(a, b) = ab (algeb. product) Imp(a, b) = $\begin{cases} \frac{1}{b} & \text{if } a \leq b \\ \frac{b}{a} & \text{else} \end{cases}$
- 3. Łukasiewicz implication

 $t(a, b) = max{ 0, a + b - 1 } (bounded diff.)$ $Imp(a, b) = min{ 1, 1 - a + b }$

example: QL implication $\text{Imp}(a, b) = s(c(a), t(a, b))$

- 1. Zadeh implication
	- $t(a, b) = min \{ a, b \}$ (std.) Imp(a, b) = max{ 1 a, min{a, b} } $s(a,b) = max\{ a, b \}$ (std.)

2. "NN" implication \odot (Klir/Yuan 1994)

 $t(a, b) = ab$ (algebr. prd.) $Imp(a, b) = 1 - a + a²b$ $s(a,b) = a + b - ab$ (algebr. sum)

3. Kleene-Dienes implication

 $t(a, b) = \max\{0, a + b - 1\}$ (bounded diff.) Imp(a, b) = max{ 1-a, b } $s(a,b) = min \{ 1, a + b \}$ (bounded sum)

axioms for fuzzy implications

- 2. $a \leq b$ implies $Imp(x, a) \leq Imp(x, b)$ monotone in 2nd argument
-
-
- $5.$ Imp(a, a) = 1 identity
- 6. Imp(a, Imp(b, x)) = Imp(b, Imp(a, x)) exchange property
- 7. Imp(a, b) = 1 iff $a \le b$ boundary condition
- 8. Imp(a, b) = Imp($c(b)$, $c(a)$) contraposition
- 9. $Imp(\cdot, \cdot)$ is continuous continuity

monotone in 1st argument $3.$ Imp(0, a) = 1 dominance of falseness 4. $Imp(1, b) = b$ neutrality of trueness

Caution!

Not all S-, R-, QL- implications obey all axioms for fuzzy implications!

characterization of fuzzy implication

Theorem:

Imp: $[0,1] \times [0,1] \rightarrow [0,1]$ satisfies axioms 1 - 9 for fuzzy implications for a certain fuzzy complement c(**·**) ⇔

 \exists strictly monotone increasing, continuous function f: [0,1] → [0, ∞) with

$$
\bullet \, f(0) = 0
$$

- $\forall a, b \in [0,1]$: Imp(a, b) = f⁻¹(min{ f(1) f(a) + f(b), f(1)})
- $\bullet \ \forall a \in [0,1]$: c(a) = f⁻¹(f(1) f(a))

Proof: Smets & Magrez (1987), p. 337f.

examples: (in tutorial)

choosing an "appropriate" fuzzy implication ...

```
apt quotation: (Klir & Yuan 1995, p. 312)
```
To select an appropriate fuzzy implication for approximate reasoning under each particular situation is a difficult problem."

guideline:

GMP, GMT, GHS should be compatible with MP, MT, HS for fuzzy implication in calculations with relations: $B(y) = \sup \{ t(A(x), \, \text{Imp}(A(x), B(y))) : x \in X \}$

example:

Gödel implication for t-norm = bounded difference

