

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Fuzzy sets
 - Axioms of fuzzy complement, t- and s-norms
 - Generators
 - Dual tripels

Fuzzy Sets

Considered so far:

Standard fuzzy operators

- $A^{c}(x) = 1 A(x)$
- (A ∩ B)(x) = min { A(x), B(x) }
- (A ∪ B)(x) = max { A(x), B(x) }

 \Rightarrow Compatible with operators for crisp sets

with membership functions with values in $\mathbb{B} = \{0, 1\}$

 \exists Non-standard operators? \Rightarrow Yes! Innumerable many!

- Defined via axioms.
- Creation via generators.

Definition

A function c: $[0,1] \rightarrow [0,1]$ is a *fuzzy complement* iff

- (A1) c(0) = 1 and c(1) = 0.
- $(A2) \qquad \forall a, b \in [0,1]: a \le b \implies c(a) \ge c(b).$

"nice to have":

(A3)	$c(\cdot)$ is continuous.	
(A4)	∀ a ∈ [0,1]: c(c(a)) = a	involutive

Examples:

a) standard fuzzy complement c(a) = 1 - a

ad (A1):
$$c(0) = 1 - 0 = 1$$
 and $c(1) = 1 - 1 = 0$
ad (A2): $c'(a) = -1 < 0$ (monotone decreasing)

ad (A3): ⊠ ad (A4): 1 – (1 – a) = a

monotone decreasing

ad (A1): c(0) = 1 since 0 < t and c(1) = 0 since t < 1.

ad (A2): monotone (actually: constant) from 0 to t and t to 1, decreasing at t

ad (A3): not valid \rightarrow discontinuity at t

ad (A4): not valid \rightarrow counter example

 $c(c(\frac{1}{4})) = c(1) = 0 \neq \frac{1}{4}$ for $t = \frac{1}{2}$

ad (A3): is continuous as a composition of continuous functions; alternative argument: derivative exists, see c'(a) in (A2)

ad (A4): not valid \rightarrow counter example

$$c\left(c\left(\frac{1}{3}\right)\right) = c\left(\frac{3}{4}\right) = \frac{1}{2}\left(1 - \frac{1}{\sqrt{2}}\right) \neq \frac{1}{3}$$

ad (A3): is continuous as a composition of continuous functions
ad (A4):
$$c(c(a)) = c\left((1-a^w)^{\frac{1}{w}}\right) = \left(1 - \left[(1-a^w)^{\frac{1}{w}}\right]^w\right)^{\frac{1}{w}}$$

 $= (1-(1-a^w))^{\frac{1}{w}} = (a^w)^{\frac{1}{w}} = a$

 \checkmark

Theorem

If function c: $[0,1] \rightarrow [0,1]$ satisfies axioms (A1) and (A2) of fuzzy complement then it has at most one fixed point a^* with $c(a^*) = a^*$.

Proof:

one fixed point \rightarrow see example (a) \rightarrow intersection with bisectrix

no fixed point \rightarrow see example (b) \rightarrow no intersection with bisectrix

assume \exists n > 1 fixed points, for example a* and b* with a* < b*

 \Rightarrow c(a^{*}) = a^{*} and c(b^{*}) = b^{*} (fixed points)

 \Rightarrow c(a^{*}) < c(b^{*}) with a^{*} < b^{*} impossible if c(·) is monotone decreasing

 \Rightarrow contradiction to axiom (A2)

Theorem

If function c:[0,1] \rightarrow [0,1] satisfies axioms (A1) – (A3) of fuzzy complement then it has exactly one fixed point a* with c(a*) = a*.

Proof:

Intermediate value theorem \rightarrow

If $c(\cdot)$ continuous (A3) and $c(0) \ge c(1)$ (A1/A2)

then $\forall v \in [c(1), c(0)] = [0,1]$: $\exists a \in [0,1]$: c(a) = v.

 \Rightarrow there must be an intersection with bisectrix

 \Rightarrow a fixed point exists and by previous theorem there are no other fixed points!

Examples:

(a) c(a) = 1 - a $\Rightarrow a = 1 - a$ $\Rightarrow a^* = \frac{1}{2}$

(b) $c(a) = (1 - a^w)^{1/w} \implies a = (1 - a^w)^{1/w} \implies a^* = (\frac{1}{2})^{1/w}$

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Fuzzy Complement: 1st Characterization

Lecture 02

 \rightarrow make sure that pseudoinverse is equal to inverse, here!

$$g(x) = \log(x+1) \rightarrow g^{-1}(x) = e^x - 1$$
 (inverse)

$$g^{(-1)}(x) = g^{-1}(\min\{g(1), x\})$$
 (pseudoinverse)
$$c(a) = g^{(-1)}(\underbrace{g(1) - g(a)}_{= x})$$

 $\min\{g(1), g(1) - a\} = g(1) - g(a) \le g(1) \text{ since } 0 \le g(a) \le \log 2 \text{ for } a \in [0, 1]$

therefore,

$$c(a) = g^{(-1)}(g(1) - g(a)) = g^{-1}(g(1) - g(a))$$

Examples

- d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a)$ for $\lambda > -1$
 - $g(0) = \log_e(1) = 0$
 - strictly monotone increasing since $g'(a) = \frac{1}{1+\lambda a} > 0$ for $a \in [0, 1]$
 - inverse function on [0,1] is $g^{-1}(a) = \frac{\exp(\lambda a) 1}{\lambda}$, thus

$$c(a) = g^{-1} \left(\frac{\log(1+\lambda)}{\lambda} - \frac{\log(1+\lambda a)}{\lambda} \right)$$
$$= \frac{\exp(\log(1+\lambda) - \log(1+\lambda a)) - 1}{\lambda}$$
$$= \frac{1}{\lambda} \left(\frac{1+\lambda}{1+\lambda a} - 1 \right) = \frac{1-a}{1+\lambda a} \quad \text{(Sugeno Complement)}$$

Definition

A function t:[0,1] x [0,1] \rightarrow [0,1] is a *fuzzy intersection* or *t-norm* iff $\forall a,b,d \in [0,1]$

(A1) t(a, 1) = a	(boundary condition)
(A2) $b \le d \Rightarrow t(a, b) \le t(a, d)$	(monotonicity)
(A3) $t(a,b) = t(b, a)$	(commutative)
(A4) t(a, t(b, d)) = t(t(a, b), d)	(associative)

"nice to have"

(A5) t(a, b) is continuous(continuity)(A6) t(a, a) < a</td>for 0 < a < 1</td>(subidempotent)(A7) $a_1 < a_2$ and $b_1 \le b_2 \implies t(a_1, b_1) < t(a_2, b_2)$ (strict monotonicity)

Note: the only idempotent t-norm is the standard fuzzy intersection

G. Rudolph: Computational Intelligence • Winter Term 2024/25 16

Lecture 02

Theorem:

The only idempotent t-norm is the standard fuzzy intersection.

Proof:

Assume there exists a t-norm with t(a,a) = a for all $a \in [0,1]$.

• If $0 \le a \le b \le 1$ then

 $a = t(a,a) \leq t(a,b) \leq t(a, 1) = a$

 $b = t(b,b) \leq t(b,a) \leq t(b, 1) = b$

by assumption by monotonicity by boundary condition

and hence
$$t(a,b) = a$$
.

• If $0 \le b \le a \le 1$ then

and hence t(a,b) = t(b,a) = b. ↑

by commutativity

q.e.d.

t(a,b) = min(a,b)

is the only

possible solution!

technische universität dortmund

Examples:

Name	Function	(a)	(b)
(a) Standard	t(a, b) = min { a, b }		
(b) Algebraic Product	t(a, b) = a · b		
(c) Bounded Difference	t(a, b) = max { 0, a + b − 1 }		
	a if b = 1		
(d) Drastic Product	$t(a, b) = \begin{cases} b & if a = 1 \end{cases}$		
	$t(a, b) = \begin{cases} a & \text{if } b = 1 \\ b & \text{if } a = 1 \\ 0 & \text{otherwise} \end{cases}$		
		(C)	(d)

Is algebraic product a t-norm? Check the 4 axioms!

ad (A1):
$$t(a, 1) = a \cdot 1 = a$$
 \boxdot ad (A3): $t(a, b) = a \cdot b = b \cdot a = t(b, a)$ \checkmark ad (A2): $a \cdot b \le a \cdot d \Leftrightarrow b \le d$ \checkmark ad (A4): $a \cdot (b \cdot d) = (a \cdot b) \cdot d$ \checkmark

Theorem

Function t: $[0,1] \times [0,1] \rightarrow [0,1]$ is a t-norm,

 \exists decreasing generator f:[0,1] $\rightarrow \mathbb{R}$ with t(a, b) = f⁻¹(min{ f(0), f(a) + f(b) }).

Example:

f(x) = 1/x - 1 is decreasing generator since

- f(x) is continuous $\mathbf{\nabla}$
- f(1) = 1/1 1 = 0 $\mathbf{\nabla}$
- $f'(x) = -1/x^2 < 0$ (monotone decreasing) $\mathbf{\nabla}$

inverse function is $f^{-1}(x) = \frac{1}{x+1}$; $f(0) = \infty \implies \min\{f(0), f(a) + f(b)\} = f(a) + f(b)$

$$\Rightarrow t(a, b) = f^{-1}\left(\frac{1}{a} + \frac{1}{b} - 2\right) = \frac{1}{\frac{1}{a} + \frac{1}{b} - 1} = \frac{ab}{a + b - ab}$$

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Definition

A function s:[0,1] x [0,1] \rightarrow [0,1] is a *fuzzy union* or *s-norm* iff $\forall a,b,d \in [0,1]$ (A1) s(a, 0) = a (boundary condition)

(AT) S(a, 0) - a	(boundary condition)
(A2) $b \le d \implies s(a, b) \le s(a, d)$	(monotonicity)
(A3) s(a, b) = s(b, a)	(commutative)
(A4) s(a, s(b, d)) = s(s(a, b), d)	(associative)

"nice to have"

(A5) s(a, b) is continuous(continuity)(A6) s(a, a) > afor 0 < a < 1(superidempotent)(A7) $a_1 < a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) < s(a_2, b_2)$ (strict monotonicity)

Note: the only idempotent s-norm is the standard fuzzy union

Examples:

Name	Function	(a)	(b)
Standard	s(a, b) = max { a, b }		
Algebraic Sum	s(a, b) = a + b − a · b		
Bounded Sum	s(a, b) = min { 1, a + b }		
	$\int a if b = 0$		
Drastic Union	$s(a, b) = \begin{cases} b & \text{if } a = 0 \\ 1 & \text{otherwise} \end{cases}$		
	1 otherwise		
		(c)	(d)

Is algebraic sum an s-norm? Check the 4 axioms!

ad (A1): $s(a, 0) = a + 0 - a \cdot 0 = a$ \square ad (A3): \square ad (A2): $a + b - a \cdot b \le a + d - a \cdot d \Leftrightarrow b (1 - a) \le d (1 - a) \Leftrightarrow b \le d$ \square ad (A4): \square

Theorem

Function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a s-norm \Leftrightarrow

∃ increasing generator g:[0,1] → \mathbb{R} with s(a, b) = g⁻¹(min{g(1), g(a) + g(b)}).

Example:

g(x) = -log(1 - x) is increasing generator since

- g(x) is continuous \checkmark
- $g(0) = -\log(1 0) = 0$
- g'(x) = 1/(1 x) > 0 (monotone increasing)

inverse function is $g^{-1}(x) = 1 - \exp(-x)$; $g(1) = \infty \Rightarrow \min\{g(1), g(a) + g(b)\} = g(a) + g(b)$ $\Rightarrow s(a, b) = g^{-1}(-\log(1-a) - \log(1-b))$ $= 1 - \exp(\log(1-a) + \log(1-b))$ = 1 - (1-a)(1-b) = a + b - ab (algebraic sum)

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Combination of Fuzzy Operations: Dual Triples Lecture 02

Background from classical set theory:

 \cap and \cup operations are dual w.r.t. complement since they obey DeMorgan's laws

Definition

A pair of t-norm $t(\cdot, \cdot)$ and s-norm $s(\cdot, \cdot)$ is said to be **dual with regard to the fuzzy complement** $c(\cdot)$ iff

for all $a, b \in [0,1]$.

Examples of dual tripels

t-norm	s-norm	complement
min { a, b }	max { a, b }	1 – a
a · b	a + b – a · b	1 – a
max { 0, a + b – 1 }	min { 1, a + b }	1 – a

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2024/25

Definition

Let (c, s, t) be a tripel of fuzzy complement c(·), s- and t-norm.

If t and s are dual to c then the tripel (c,s, t) is called a *dual tripel*.

Dual Triples vs. Non-Dual Triples

c(t(a, b))

s(c(a), c(b))

Lecture 02

Dual Triple:

- bounded difference
- bounded sum
- standard complement

 \Rightarrow left image = right image

Non-Dual Triple:

- algebraic product
- bounded sum
- standard complement

 \Rightarrow left image \neq right image

Why are dual triples so important?

- \Rightarrow allow equivalence transformations of fuzzy set expressions
- \Rightarrow required to transform into some equivalent normal form (standardized input)

 \Rightarrow e.g. two stages: intersection of unions

$$\bigcap_{i=1}^{n} (A_i \cup B_i)$$

or union of intersections

$$\bigcup_{i=1}^{n} (A_i \cap B_i)$$

Example:

- $A \cup (B \cap (C \cap D)^c) =$
- $A \cup (B \cap (C^c \cup D^c)) =$
- $A \cup (B \cap C^c) \cup (B \cap D^c)$

- \leftarrow not in normal form
- ← equivalent if DeMorgan's law valid (dual triples!)
- \leftarrow equivalent (distributive lattice!)

24

Lecture 02