

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Fuzzy sets
	- **Axioms of fuzzy complement, t- and s-norms**
	- Generators
	- **Dual tripels**

Fuzzy Sets

Considered so far:

Standard fuzzy operators

- $A^{c}(x) = 1 A(x)$
- $(A \cap B)(x) = min \{ A(x), B(x) \}$
- $(A \cup B)(x) = max \{ A(x), B(x) \}$

 \Rightarrow Compatible with operators for crisp sets

with membership functions with values in $\mathbb{B} = \{0, 1\}$

∃ Non-standard operators? ⇒ Yes! Innumerable many!

- Defined via axioms.
- Creation via generators.

Definition

A function c: $[0,1] \rightarrow [0,1]$ is a **fuzzy complement** iff

- $(A1)$ c(0) = 1 and c(1) = 0.
- (A2) \forall a, b \in [0,1]: a \le b \Rightarrow c(a) \ge c(b). monotone decreasing

"nice to have":

Examples:

a) standard fuzzy complement $c(a) = 1 - a$

\n ad (A1):
$$
c(0) = 1 - 0 = 1
$$
 and $c(1) = 1 - 1 = 0$
\n ad (A2): $c'(a) = -1 < 0$ (monotone decreasing)\n

ad $(A3)$: \boxtimes ad $(A4)$: $1 - (1 - a) = a$

t 1

 $\overline{\mathbf{M}}$

ad $(A1)$: $c(0) = 1$ since $0 < t$ and $c(1) = 0$ since $t < 1$.

ad (A2): monotone (actually: constant) from 0 to t and t to 1, decreasing at t

ad (A3): not valid \rightarrow discontinuity at t

ad (A4): not valid \rightarrow counter example

 $c(c(\frac{1}{4})) = c(1) = 0 \neq \frac{1}{4}$ for $t = \frac{1}{2}$

ad (A3): is continuous as a composition of continuous functions; *alternative argument: derivative exists, see c'(a) in (A2)*

ad (A4): not valid \rightarrow counter example

$$
c\left(c\left(\frac{1}{3}\right)\right) = c\left(\frac{3}{4}\right) = \frac{1}{2}\left(1 - \frac{1}{\sqrt{2}}\right) \neq \frac{1}{3}
$$

Fuzzy Complement: Examples	Lecture 02
d) $c(a) = \frac{1-a}{1+\lambda a}$ for $\lambda > -1$	Sugeno class
\n $\begin{array}{c}\n \circ & \circ \\ \circ &$	

ad (A3): is continuous as a composition of continuous functions
ad (A4):
$$
c(c(a)) = c((1 - a^w)^{\frac{1}{w}}) = (1 - [(1 - a^w)^{\frac{1}{w}}]^{w})^{\frac{1}{w}}
$$

$$
= (1 - (1 - a^w))^{\frac{1}{w}} = (a^w)^{\frac{1}{w}} = a
$$

 Δ

Theorem

If function $c:[0,1] \rightarrow [0,1]$ satisfies axioms (A1) and (A2) of fuzzy complement then it has at most one fixed point a^* with $c(a^*) = a^*$.

Proof:

one fixed point \rightarrow see example (a) \rightarrow intersection with bisectrix

no fixed point \rightarrow see example (b) \rightarrow no intersection with bisectrix

assume \exists n > 1 fixed points, for example a* and b* with a^* < b*

$$
\Rightarrow
$$
 c(a^{*}) = a^{*} and c(b^{*}) = b^{*} (fixed points)

 \Rightarrow c(a*) < c(b*) with a* < b* impossible if c(\cdot) is monotone decreasing

 \Rightarrow contradiction to axiom (A2) $\qquad \qquad \blacksquare$

Theorem

If function c: $[0,1] \rightarrow [0,1]$ satisfies axioms $(A1) - (A3)$ of fuzzy complement then it has exactly one fixed point a^* with $c(a^*) = a^*$.

Proof:

Intermediate value theorem \rightarrow

If $c(\cdot)$ continuous $(A3)$ and $c(0) \ge c(1)$ $(A1/A2)$

then $\forall v \in [c(1), c(0)] = [0,1]$: $\exists a \in [0,1]$: $c(a) = v$.

 \Rightarrow there must be an intersection with bisectrix

 \Rightarrow a fixed point exists and by previous theorem there are no other fixed points! \blacksquare

Examples:

(a) $c(a) = 1 - a$ $\Rightarrow a = 1 - a$ $\Rightarrow a^* = \frac{1}{2}$

(b) c(a) = $(1 - a^w)^{1/w}$ \Rightarrow a = $(1 - a^w)^{1/w}$ \Rightarrow a^{*} = $(\frac{1}{2})^{1/w}$

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Fuzzy Complement: 1st Characterization

Lecture 02

 \rightarrow make sure that pseudoinverse is equal to inverse, here!

$$
g(x) = \log(x+1) \quad \to \quad g^{-1}(x) = e^x - 1 \qquad \nabla \qquad \text{(inverse)}
$$

$$
g^{(-1)}(x) = g^{-1}(\min\{g(1), x\})
$$

\n
$$
c(a) = g^{(-1)}(g(1) - g(a))
$$

\n
$$
= x
$$
 (pseudoinverse)

 $\min\{g(1), g(1) - a\} = g(1) - g(a) \le g(1)$ since $0 \le g(a) \le \log 2$ for $a \in [0, 1]$

therefore,

$$
c(a) = g^{(-1)}(g(1) - g(a)) = g^{-1}(g(1) - g(a)) \quad \Box
$$

Examples

- d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a)$ for $\lambda > -1$
	- $g(0) = \log_e(1) = 0$
	- strictly monotone increasing since $g'(a) = \frac{1}{1+\lambda a} > 0$ for $a \in [0,1]$
	- inverse function on [0,1] is $g^{-1}(a) = \frac{\exp(\lambda a) 1}{\lambda}$, thus

$$
c(a) = g^{-1} \left(\frac{\log(1+\lambda)}{\lambda} - \frac{\log(1+\lambda a)}{\lambda} \right)
$$

=
$$
\frac{\exp(\log(1+\lambda) - \log(1+\lambda a)) - 1}{\lambda}
$$

=
$$
\frac{1}{\lambda} \left(\frac{1+\lambda}{1+\lambda a} - 1 \right) = \frac{1-a}{1+\lambda a}
$$
 (Sugeno Complement)

Definition

A function t:[0,1] x [0,1] → [0,1] is a *fuzzy intersection* or *t-norm* iff $\forall a,b,d \in [0,1]$

"nice to have"

 $(A5)$ t(a, b) is continuous (continuity) (A6) $t(a, a) < a$ for $0 < a < 1$ (subidempotent) (A7) $a_1 < a_2$ and $b_1 \le b_2 \Rightarrow t(a_1, b_1) < t(a_2, b_2)$ (strict monotonicity)

Note: the only idempotent t-norm is the standard fuzzy intersection

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25 16

Theorem:

The only idempotent t-norm is the standard fuzzy intersection.

Proof:

Assume there exists a t-norm with $t(a,a) = a$ for all $a \in [0,1]$.

• If $0 \le a \le b \le 1$ then

by assumption by monotonicity by boundary condition

 $a = t(a,a) \leq t(a,b) \leq t(a, 1) = a$

 $b = t(b,b) \leq t(b,a) \leq t(b, 1) = b$

and hence $t(a,b) = a$.

• If $0 \leq b \leq a \leq 1$ then

by assumption by monotonicity by boundary condition and hence $t(a,b) = t(b,a) = b$.

$$
1 \text{ Hence } I(a, b) = I(b, a) = b.
$$

q.e.d. by commutativity

technische universität dortmund

 $t(a,b) = min(a,b)$ is the only possible solution!

Examples:

Is algebraic product a t-norm? Check the 4 axioms!

ad (A1): $t(a, 1) = a \cdot 1 = a$ ad (A2): $a \cdot b \le a \cdot d \Leftrightarrow b \le d$ \Box ad (A3): $t(a, b) = a \cdot b = b \cdot a = t(b, a) \quad \text{\n $\Box$$ ad $(A4)$: $a \cdot (b \cdot d) = (a \cdot b) \cdot d$

Theorem

Function t: $[0,1] \times [0,1] \rightarrow [0,1]$ is a t-norm,

∃decreasing generator f:[0,1] $\rightarrow \mathbb{R}$ with $\,$ t(a, b) = f⁻¹(min{ f(0), f(a) + f(b) }). $\qquad \blacksquare$

Example:

 $f(x) = 1/x - 1$ is decreasing generator since

- f(x) is continuous \blacksquare
- $f(1) = 1/1 1 = 0$
- $f'(x) = -1/x^2 < 0$ (monotone decreasing) \Box

inverse function is $f^{-1}(x) = \frac{1}{x+1}$; $f(0) = \infty \implies \min\{f(0), f(a) + f(b)\} = f(a) + f(b)$

$$
\Rightarrow t(a, b) = f^{-1}\left(\frac{1}{a} + \frac{1}{b} - 2\right) = \frac{1}{\frac{1}{a} + \frac{1}{b} - 1} = \frac{ab}{a + b - ab}
$$

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Definition

A function s:[0,1] x [0,1] → [0,1] is a *fuzzy union* or *s-norm* iff $\forall a,b,d \in [0,1]$

"nice to have"

 $(A5)$ s(a, b) is continuous (continuity) (A6) $s(a, a) > a$ for $0 < a < 1$ (superidempotent) (A7) $a_1 < a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) < s(a_2, b_2)$ (strict monotonicity)

Note: the only idempotent s-norm is the standard fuzzy union

Examples:

Is algebraic sum an s-norm? Check the 4 axioms!

ad (A1): $s(a, 0) = a + 0 - a \cdot 0 = a$ ad (A2): $a + b - a \cdot b \le a + d - a \cdot d \Leftrightarrow b (1 - a) \le d (1 - a) \Leftrightarrow b \le d \Box$ ad $(A3)$: \boxtimes ad $(A4)$: \boxtimes

Theorem

Function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a s-norm \Leftrightarrow

∃ increasing generator g:[0,1] $\rightarrow \mathbb{R}$ with s(a, b) = g⁻¹(min{ g(1), g(a) + g(b) }). ■

Example:

 $g(x) = -\log(1 - x)$ is increasing generator since

- $g(x)$ is continuous \Box
- $q(0) = -\log(1 0) = 0$
- $g'(x) = 1/(1 x) > 0$ (monotone increasing) \boxtimes

inverse function is $g^{-1}(x) = 1 - \exp(-x)$; $g(1) = \infty \implies \min\{g(1), g(a) + g(b)\} = g(a) + g(b)$ \Rightarrow s(a, b) $= g^{-1}(-log(1-a) - log(1-b))$ $= 1 - \exp(\log(1 - a) + \log(1 - b))$ $= 1 - (1 - a)(1 - b) = a + b - ab$ (algebraic sum)

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Lecture 02 Combination of Fuzzy Operations: Dual Triples

Background from classical set theory:

 \cap and \cup operations are dual w.r.t. complement since they obey DeMorgan's laws

Definition

A pair of t-norm $t(\cdot, \cdot)$ and s-norm $s(\cdot, \cdot)$ is said to be *dual with regard to the fuzzy complement* c(·) iff

• c(
$$
t(a, b)
$$
) = s($c(a)$, $c(b)$)

• c(
$$
s(a, b)
$$
) = $t(c(a), c(b))$)

for all a, $b \in [0,1]$.

Examples of dual tripels

Definition

Let (c, s, t) be a tripel of fuzzy complement $c(\cdot)$, s- and t-norm.

If t and s are dual to c then the tripel (c,s, t) is called a *dual tripel*.

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Dual Triples vs. Non-Dual Triples

 $c(t(a, b))$ s($c(a)$, $c(b)$)

Lecture 02

Dual Triple:

- bounded difference
- bounded sum
- standard complement

 \Rightarrow left image = right image

Non-Dual Triple:

- algebraic product
- bounded sum
- standard complement

 \Rightarrow left image \neq right image

Why are dual triples so important?

- \Rightarrow allow equivalence transformations of fuzzy set expressions
- \Rightarrow required to transform into some equivalent normal form (standardized input)

 \Rightarrow e.g. two stages: intersection of unions

$$
\bigcap_{i=1}^{n} (A_i \cup B_i)
$$

or union of intersections

$$
\bigcup_{i=1}^{n} (A_i \cap B_i)
$$

Example:

- $A\cup (B\cap (C\cap D)^c) =$
- $A\cup (B\cap (C^c\cup D^c)) =$
- $A\cup (B\cap C^c)\cup (B\cap D^c)$
- \leftarrow not in normal form
- \leftarrow equivalent if DeMorgan's law valid (dual triples!)

Lecture 02

 \leftarrow equivalent (distributive lattice!)