technische universitat
dortmund

Computational Intelligence
Winter Term 2022/23

Prof. Dr. Gunter Rudolph

Lehrstuhl fur Algorithm Engineering (LS 11)
Fakultat fur Informatik

TU Dortmund

Plan for Today

e Deep Neural Networks
= Model

® Training

e Convolutional Neural Networks
= Model

= Training

technische universitat

G. Rudolph: Computational Intelligence = Winter Term 2022/23

dortmund 2
Deep Neural Networks (DNN) Deep Neural Networks (DNN)
DNN = Neural Network with > 3 layers example: separate ‘inner ring‘ (i.r.) / ‘outer ring’ (o.r.) / ‘outside’
6] 6 3 - - . ‘_‘; o >o
we know: L = 3 layers in MLP sufficient to describe arbitrary sets ¢ 0 P ‘%r- °(-)'-
L : '

What can be achieved by more than 3 layers?

information stored in weights of edges of network
— more layers — more neurons — more edges — more information storable

Which additional information storage is useful?

traditionally : handcrafted features fed into 3-layer perceptron
modern viewpoint : let L-k layers learn the feature map, last k layers separate!

H_/

advantage:
human expert need not design features manually for each application domain

= no expert needed, only observations!

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23
dortmund 3

—
|

iy " p
8 4

= MLP with 3 layers and 12 neurons

Is there a simpler way?
observations (z,y) € R” x B

feature map F(z) = (Fi(x),..., Fu(x)) € R™

feature = measurable property of an observation or
numerical transformation of observed value(s)

= find MLP on transformed data points (F(x), y)

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2022/23

4

Deep Neural Networks (DNN)

example: separate ‘inner ring‘ / ‘outer ring’
e feature map F(x) = (21,22, /2% +23) € R3

o0 X X * %
S b

5

A . 4
A . 2D — 3D 3
2

B 3 : 3
T 15 %3&%’3"

T 1: outer
2 { 0: inner

iy
o gl

technische universitat G. Rudolph: Computational Intelligence * Winter Term 2022/23

Deep Neural Networks (DNN)

but: how to find useful features?

— typically designed by experts with domain knowledge

— traditional approach in classification:
1. design & select appropriate features
2. map data to feature space
3. apply classification method to data in feature space

modern approach via DNN: learn feature map and classification simultaneously!

L — k layers — klayers —— ¥

N 2N J
Y

feature map classifier

proven: MLP can approximate any continuous map with aribitrary accuracy

technische universitat

G. Rudolph: Computational Intelligence = Winter Term 2022/23

dortmund 5 dortmund 6
Deep Multi-Layer Perceptrons Deep Multi-Layer Perceptrons
N . e’ 1
contra: countermeasures: vanishing gradient: a(z) = e g d(z) = a(z) - (1 - a(z))
- danger: overfitting - regularization / dropout 1 1\2
— need larger training set (expensive!) — data augmentation VzeR: a(z)-(1-a(z)) < 1 © (a(f) - 5) >0 ™
— optimization needs more time — parallel hardware (multi-core / GPU)] 12F v ,
: = gradient /() € [0, 1]
- response landscape changes - not necessarily bad 1 a(x)
— more sigmoidal activiations — change activation functions principally: desired property in learning process! 08
— gradient vanishes — gradient does not vanish if weights stabilize such that neuron almost always |
— small progress in learning weights — progress in learning weights either fires [i.e., a(x) = 1] or not fires [i.e., a(x) = 0] o4
then gradient = 0 and the weights are hardly changed o2} / a'(x)
o) _ o = leads to convergence in the learning process! D
vanishing gradient: (underlying principle)
forward pass y = F3(fo(F, (6 Wy); W,); W) f, = activation function while learning, updatis of weights via partial derivatives:
Of (w,u; 2, 2*) / * 1eo 1ot _
backward pass (f5(fo(f;(X; Wy); W,); Wy))' = T owy, 2 la(upy) — 2] - @' (upy) - wyy, - o' (wjz) - @ (L= 2 layers)
£ (Fo(F G W)W) wig) = £ (F (s wy);wo) - Fif(xwy) chain rule! k=1 <1 < L

— repeated multiplication of values in (0,1) —» 0

G. Rudolph: Computational Intelligence * Winter Term 2022/23
7

technische universitat
dortmund

= ingeneral fu,, =04 %) = 0as L1

technische universitat
dortmund

L < 3: effect neglectable; but L > 3

G. Rudolph: Computational Intelligence = Winter Term 2022/23

8

Deep Neural Networks

non-sigmoid activation functions

0
/1[z>0}($) dv = { .

Threshold(x) |

if v <0

> 0 } = max{0,z} = ReLU(x)

ReLU(x)

=y
-

X
PI
— dx =log(1 + ") = softplus(x
[e =tog(1 4 %) = softplusi)
Logistic(x) softplus(x)
=
1
| x
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23
dortmund 9

Deep Neural Networks
dropout

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

!

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

- parts of network is effectively switched off
e.g. multiplication of outputs with 0,
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5

- gradient descent on switching parts of network
— artificial perturbation of greediness during gradient descent

- can reduce computational complexity if implemented sophistically

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2022/23

10

Deep Neural Networks

data augmentation (counteracts overfitting)

— extending training set by slightly perturbed true training examples

- best applicable if inputs are images: translate, rotate, add noise, resize, ...

original image rotated noisy noisy + rotated

resized

- if x is real vector then adding e.g. small gaussian noise
— here, utility disputable (artificial sample may cross true separating line)

extra costs for acquiring additional annotated data are inevitable!

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23
dortmund 11

Deep Neural Networks
stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases now:
update of weights

- after each training example
- after all training examples

update of weights
b= 1 - after b training examples
b = |B| where 1 <b < |B]|

- search in subspaces — counteracts greediness — better generalization

- accelerates optimization methods (parallelism possible)

choice of batch size b

blarge = better approximation of gradient

b small = better generalization .
often b=100 (empirically)

b also depends on available hardware

b too small = multi-cores underemployed

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2022/23

12

Deep Neural Networks

cost functions

® regression
N training samples (x;, y;)
insist that f(x; 0)=vy; fori=1,...,N
if f(x; 0) linear in 6 then 07x, = y; fori=1,..., N or X0 =y
= best choice for 0: least square estimator (LSE)
=>X0-y)T(X0-y) —>mein!

in case of MLP: f(x; 0) is nonlinear in 6

= best choice for 8: (nonlinear) least square estimator; aka TSSE
= I (f(x; 0) — y;)2 — min!
i 0

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23
dortmund 13

Deep Neural Networks

cost functions

* classification
N training samples (x;, y;) where y, € {1, ..., C}, C =#classes
— want to estimate probability of different outcomes for unknown sample

— decision rule: choose class with highest probability (given the data)

idea: use maximum likelihood estimator (MLE)
= estimate unknown parameter 6 such that likelihood of sample x,, ..., Xy

gets maximal as a function of 6

likelihood function N
L(O:xr....oaon) = fxpxy (@ ani0) = [[fx(ei6) = max!
i=1

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23
dortmund 14

Deep Neural Networks
here: random variable X € {1, ..., C} with P{ X =i} = q; (true, but unknown)

— we use relative frequencies of training set x4, ..., Xy as estimator of g;

1 o
6= > 14— = thereare N - samples of class i in training set
o=t
= the neural network should output p as close as possible to ¢! [actually: to q]
N C)
likelihood L(p:x1.....an) = [[P{Xk = o} = [] 5% — max!
k=1 =1
C C) C
log L = log (Hﬁ,‘;\ q’) = Z log pi 4 = N Z Gi - log p; — max!
1=1 =1 1=1
N—— —
—H(q.,p)

= maximizing log L leads to same solution as minimizing cross-entropy H (g, p)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23
dortmund 15

Deep Neural Networks

in case of classification

,)'U‘,TJ‘+[)]
use softmax function P{y = j |2} = —z——=—— in output layer
Zi’:l ew; T+b;
— multiclass classification: probability of membershiptoclassj=1,...,C

— class with maximum excitation w'x+b has maximum probabilty

— decision rule: element x is assigned to class with maximum probability

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23
dortmund 16

Convolutional Neural Networks (CNN) iéﬁ;

most often used in graphical applications (2-D input; also possible: k-D tensors)

-4 1)
layer of CNN = 3 stages I(x,y) Kij) | -1]-2]-11]-0
1. convolution 1111
2. nonlinear activation (e.g. ReLU) 21 2]s
3. pooling |

example

1. Convolution

local filter / kernel K(i, j) applied to each cell of image I(x, y)

é 6
S(wvy> = (K*I)(l’,y) = Z Z I(x+i,y+j)~K(z’,j)

i=—8 j=—0

Convolutional Neural Networks (CNN) iéﬁ;

example: edge detection with Sobel kernel

— two convolutions

-1,0,1 -1,-2, -1

Ke=1-2,0,2 Ky=1 0,0, 0
-1,0,1 1,21 S(z,y) = V/Sx(w,y)? + Gy (2,y)?
yields S, yields S,

original image I(x,y) image S(x,y) after convolution

technische universitat G. Rudolph: Computational Intelligence * Winter Term 2022/23

G. Rudolph: Computational Intelligence = Winter Term 2022/23

technische universitat

e.g. horizontal line detection
stride

= distance between two applications of a filter (horizontal s, / vertical s,)
— leads to smaller images if s, or s, > 1

padding
= treatment of border cells if filter does not fit in image

e “valid“ : apply only to cells for which filter fits — leads to smaller images
e “same”: add rows/columns with zero cells; apply filter to all cells (— same size)

dortmund 17 dortmund 18
Convolutional Neural Networks m Convolutional Neural Networks m
filter / kernel 2. nonlinear activation
well known in image processing; typically hand-crafted! 11 1 1 a(x) = ReLU(X™ W + ¢)
here: values of filter matrix learnt in CNN ! 1 11
I I
actually: many filters active in CNN 14

3. pooling
in principle: summarizing statistic of nearby outputs
e.g. max-pooling m(i,j) = max(I(i+a, j+b):a,b=-5, ...,0,...0)ford>0

- also possible: mean, median, matrix norm, ...

- can be used to reduce matrix / output dimensions

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23
dortmund 19

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23

dortmund 20

Convolutional Neural Networks

example: max-pooling 2x2 (iterated), stride = 2

3000 x 4000

375 x 500

technische universitat
dortmund

1500 x 2000 750 x 1000
-
]
2x2 &
93x 125 46 x 62
187 x 250 32 x 32
pooling

G. Rudolph: Computational Intelligence = Winter Term 2022/23
21

Convolutional Neural Networks

Pooling with Stride

Cn, :columns of input
i, :rows of input

f, :columns of filter
f. :rows of filter

s, . stride for columns
s, :stride for rows

=

image size : r,, X ¢,
filter size : f. xf,

assumptions:
f(; = Cin
f. < f

padding = valid

technische universitat
dortmund

How often fits the filter in image horizontally?
pos,; =1

pos; = pos; + 8,

POS3 = POS, + S; = (POS; + S.) + 5. = pos; + 2+ ¢
pbsk =pos; +(k—1) s,

thus, find largest k such that
pos;+ (k—1) s.+(f.—1) < ¢,

& (k—=1)-s.+f, < ¢,

= k < (c,—f)/s.+1 (integer division!)
Cn—T

S EI= PR

[analog reasoning for rows!]

G. Rudolph: Computational Intelligence = Winter Term 2022/23
22

Convolutional Neural Networks

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts

- flatten layer (— converts k-D matrix to 1-D matrix required for MLP input layer)

- fully connected MLP

examples:
2-D input layer
v

convolution layer 1

2-D input layer
v v

convolution layer 1a convolution layer 2a

v v v
convolution layer 2 convolution layer 1b convolution layer 2b
v v v
v flatten layer flatten layer
convolution layer k \ /
v
flatten layer concatenate
v ¥
MLP MLP

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2022/23
23

Convolutional Neural Networks

Popular CNN Architectures

Name Year Depth
LeNet 1998

AlexNet 2012

VGG16 2014 23
Inception-v1 2014
ResNet50 2014
Inception-v3 2015 159
Xception 2016 126
InceptionResNet 2017 572

technische universitat
dortmund

https://towardsdatascience.com

#Params

>60 M
>23M

>25M

>22M
>55M

G. Rudolph: Computational Intelligence = Winter Term 2022/23
24

Convolutional Neural Networks Convolutional Neural Networks iEE;

Popular CNN Architectures https://towardsdatascience.com Popular CNN Architectures https://towardsdatascience.com
LeNet-5 (1998) AlexNet (2012)
2x2 2%2 input
32x32x1 224x224%3
4096 4096 1000
120 84 10
T =tanh T =tanh Used dropout
S = softmax R =RelLU
S = softmax
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2022/23 technische universitat G. Rudolph: Computational Intelligence * Winter Term 2022/23
dortmund 25 dortmund 26
Convolutional Neural Networks M
Popular CNN Architectures https://towardsdatascience.com

VGG-16 (2014)

_ max-pool

224%224x3

4096 4096 1000

T =tanh Deeper than AlexNet
R=RelLU
S = softmax
technische universitat G. Rudolph: Computational Intelligence * Winter Term 2022/23

dortmund 27

