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Plan for Today

● Radial Basis Function Nets (RBF Nets)

 Model

 Training

● Hopfield Networks

 Model

 Optimization
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Radial Basis Function Nets (RBF Nets)

Definition:

□

typically, || x || denotes Euclidean norm of vector x

examples:

Gaussian

Epanechnikov

Cosine

unbounded

bounded

bounded

Definition:

RBF local iff

ϕ(r) → 0 as r → ∞ □

local



Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
4

Radial Basis Function Nets (RBF Nets)

Definition:
A function f: Rn → R is termed radial basis function net (RBF net)

iff f(x) = w1 ϕ(|| x – c1 || ) + w2 ϕ(|| x – c2 || )  + ... + wp ϕ(|| x – cq || )      □

• layered net

• 1st layer fully connected

• no weights in 1st layer

• activation functions differ

ϕ(||x-c1||)

ϕ(||x-c2||)

ϕ(||x-cq||)

x1

x2

xn

∑

w1

w2

wp

RBF neurons



Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
5

Radial Basis Function Nets (RBF Nets)

given : N training patterns (xi, yi) and q RBF neurons

find : weights w1, ..., wq with minimal error

known valueunknown

⇒ N linear equations with q unknowns

solution:

we know that f(xi) = yi for i = 1, ..., N and therefore we insist that

pik
known value



Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
6

Radial Basis Function Nets (RBF Nets)

in matrix form: P w = y with P = (pik)  and  P: N x q, y: N x 1, w: q x 1, 

case N = q: w = P -1 y if P has full rank

case N < q: many solutions but of no practical relevance

case N > q: w = P+ y where P+ is Moore-Penrose pseudo inverse

P w = y   | · P‘ from left hand side (P‘ is transpose of P)

P‘P w = P‘ y   | · (P‘P) -1 from left hand side

(P‘P) -1 P‘P w = (P‘P)-1 P‘ y   |  simplify

unit matrix P+
• existence of (P‘P)-1 ?
• numerical stability ?
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Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

q.e.d.

q.e.d.
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Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

question: how to justify this particular choice?

interpretation: minimize TSSE and prefer solutions with small values! avoid
overfitting
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Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

→  several approaches in use
→  here: grid search and crossvalidation

grid search
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Radial Basis Function Nets (RBF Nets)

Crossvalidation
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Radial Basis Function Nets (RBF Nets)

complexity (naive)
w = (P‘P) -1 P‘ y

P‘P: N2 q inversion: q3 P‘y: qN multiplication: q2 

O(N2 q) elementary operations

remark: if N large then inaccuracies for P‘P likely

⇒ first analytic solution, then gradient descent starting from this solution

requires 
differentiable 

basis functions!
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Radial Basis Function Nets (RBF Nets)

so far: tacitly assumed that RBF neurons are given

⇒ center ck and radii σ considered given and known

how to choose ck and σ ?

uniform covering

x xx

xx
x

x

x
x

x x

if training patterns 
inhomogenously 
distributed then first 
cluster analysis

choose center of basis 
function from each 
cluster, use cluster size 
for setting σ
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Radial Basis Function Nets (RBF Nets)

advantages:

• additional training patterns → only local adjustment of weights

• optimal weights determinable in polynomial time

• regions not supported by RBF net can be identified by zero outputs

(if output close to zero, verify that output of each basis function is close to zero)

disadvantages:

• number of neurons increases exponentially with input dimension

• unable to extrapolate (since there are no centers and RBFs are local)
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Radial Basis Function Nets (RBF Nets)

Example: XOR via RBF

training data: (0,0), (1,1) with value –1 
(0,1), (1,0) with value +1  

choose Gaussian kernel; set σ = 1; set centers ci to training points
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Radial Basis Function Nets (RBF Nets)

Example: XOR via RBF
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Hopfield Network

proposed 1982

characterization:

• neurons preserve state until selected at random for update

• bipolar states: x ∈ { -1, +1 }n

• n neurons fully connected

• symmetric weight matrix

• no self-loops (→ zero main diagonal entries)

• thresholds θ , neuron i fires if excitations larger than θi

energy of state x is

1

2 3

1

2

3

transition: select index k at random, new state is

where
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Hopfield Network

Fixed Points

Definition

x is fixed point of a Hopfield network iff x = sgn(x‘ W -  θ). □

Set W = x x‘ and choose θ with | θi | < n, where x ∈ {-1, +1}n.

→ sgn( x‘ W - θ) = sgn( x‘ (x x‘) ) = sgn( (x‘x) x‘ - θ) = sgn( || x ||2 x‘ - θ)

Theorem:
If W = x x‘ and | θi | < n then x is fixed point of a Hopfield network. □

Example:

Note that || x ||2 = n for all x ∈ {-1, +1}n.

→  xi = +1:   sgn( n ⋅ (+1) - θi ) = +1   iff +n - θi  ≥ 0   ⇔ θi ≤ +n      
→  xi = −1:   sgn( n ⋅ (−1) - θi ) = −1 iff −n - θi < 0   ⇔ θi > −n      
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Hopfield Network (HN)

Concept of Energy Function

given: HN with W = x x‘ ⇒ x is stable state of HN

starting point x(0) ⇒ x(1) = sgn( x(0)‘ W - θ)

⇒ excitation e = W x(1) - θ

⇒ if sign( e ) = x(0) then x(0) stable state

true if
e‘ close to x(0)

⇒small angle 
between e‘ and x(0)

1

1

0

x(0) = (1, 1)

recall:

1

0

small angle α ⇒ large cos( α )
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Hopfield Network (HN)

Concept of Energy Function

required:

small angle between e = W x(0) - θ and x(0)

⇒ larger cosine of angle indicates greater similarity of vectors

⇒ ∀e‘ of equal size: try to maximize x(0) e‘ = || x(0) || · || e || · cos ∠ (x(0) ,e) 

fixed fixed → max!

⇒ maximize x(0)‘ e = x(0)‘ (W x(0) - θ) = x(0)‘ W x(0) - θ‘ x(0)

⇒ identical to minimize -x(0)‘ W x(0) + θ‘ x(0)

Definition

Energy function of HN at iteration t is E( x(t) ) =  – x(t)‘ W x(t)  + θ‘ x(0) □1
2
–
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Hopfield Network

Theorem:

Hopfield network converges to local minimum of energy function after a finite 
number of updates. □

Proof: assume that xk has been updated

= 0  if i ≠ k
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Hopfield Network

= 0  if j ≠ k

(rename j to i, recall W = W‘, wkk = 0)

excitation ek

> 0 if xk < 0 and vice versa

> 0 since:
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Hopfield Network

⇒ every update (change of state) decreases energy function

⇒ since number of different bipolar vectors is finite 
update stops after finite #updates

remark: dynamics of HN get stable in local minimum of energy function!

q.e.d.

⇒ Hopfield network can be used to optimize combinatorial optimization problems!
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Hopfield Network

Application to Combinatorial Optimization

Idea: 

• transform combinatorial optimization problem as objective function with x ∈ {-1,+1}n

• rearrange objective function to look like a Hopfield energy function

• extract weights W and thresholds θ from this energy function

• initialize a Hopfield net with these parameters W and θ

• run the Hopfield net until reaching stable state (= local minimizer of energy function)

• stable state is local minimizer of combinatorial optimization problem
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Hopfield Network

Example I: Linear Functions

Evidently:

⇒

⇒ fixed point reached after Θ(n log n) iterations on average
[ proof: → black board ]
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Hopfield Network

Example II: MAXCUT

given: graph with n nodes and symmetric weights ωij = ωji , ωii = 0, on edges

task: find a partition V = (V0, V1) of the nodes such that the weighted sum of edges
with one endpoint in V0 and one endpoint in V1 becomes maximal

encoding: ∀ i=1,...,n:      yi = 0 , node i in set V0;         yi = 1 , node i in set V1

objective function:

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to “Hopfield normal form“

step 4: extract coefficients as weights and thresholds of Hopfield net
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Hopfield Network

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

⇒ multiply function with -1 ⇒ E(y) = -f(y)   → min!

constant value (does not affect location of optimal solution) 
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Hopfield Network

Example II: MAXCUT (continued)

step 4: extract coefficients as weights and thresholds of Hopfield net

step 3: transformation to “Hopfield normal form“

wij

0‘

remark:
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