
Computational Intelligence
Winter Term 2021/22

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
2

Plan for Today

● Radial Basis Function Nets (RBF Nets)

 Model

 Training

● Hopfield Networks

 Model

 Optimization

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
3

Radial Basis Function Nets (RBF Nets)

Definition:

□

typically, || x || denotes Euclidean norm of vector x

examples:

Gaussian

Epanechnikov

Cosine

unbounded

bounded

bounded

Definition:

RBF local iff

ϕ(r) → 0 as r → ∞ □

local

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
4

Radial Basis Function Nets (RBF Nets)

Definition:
A function f: Rn → R is termed radial basis function net (RBF net)

iff f(x) = w1 ϕ(|| x – c1 ||) + w2 ϕ(|| x – c2 ||) + ... + wp ϕ(|| x – cq ||) □

• layered net

• 1st layer fully connected

• no weights in 1st layer

• activation functions differ

ϕ(||x-c1||)

ϕ(||x-c2||)

ϕ(||x-cq||)

x1

x2

xn

∑

w1

w2

wp

RBF neurons

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
5

Radial Basis Function Nets (RBF Nets)

given : N training patterns (xi, yi) and q RBF neurons

find : weights w1, ..., wq with minimal error

known valueunknown

⇒ N linear equations with q unknowns

solution:

we know that f(xi) = yi for i = 1, ..., N and therefore we insist that

pik
known value

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
6

Radial Basis Function Nets (RBF Nets)

in matrix form: P w = y with P = (pik) and P: N x q, y: N x 1, w: q x 1,

case N = q: w = P -1 y if P has full rank

case N < q: many solutions but of no practical relevance

case N > q: w = P+ y where P+ is Moore-Penrose pseudo inverse

P w = y | · P‘ from left hand side (P‘ is transpose of P)

P‘P w = P‘ y | · (P‘P) -1 from left hand side

(P‘P) -1 P‘P w = (P‘P)-1 P‘ y | simplify

unit matrix P+
• existence of (P‘P)-1 ?
• numerical stability ?

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
7

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

q.e.d.

q.e.d.

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
8

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

question: how to justify this particular choice?

interpretation: minimize TSSE and prefer solutions with small values! avoid
overfitting

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
9

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

→ several approaches in use
→ here: grid search and crossvalidation

grid search

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
10

Radial Basis Function Nets (RBF Nets)

Crossvalidation

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
11

Radial Basis Function Nets (RBF Nets)

complexity (naive)
w = (P‘P) -1 P‘ y

P‘P: N2 q inversion: q3 P‘y: qN multiplication: q2

O(N2 q) elementary operations

remark: if N large then inaccuracies for P‘P likely

⇒ first analytic solution, then gradient descent starting from this solution

requires
differentiable

basis functions!

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
12

Radial Basis Function Nets (RBF Nets)

so far: tacitly assumed that RBF neurons are given

⇒ center ck and radii σ considered given and known

how to choose ck and σ ?

uniform covering

x xx

xx
x

x

x
x

x x

if training patterns
inhomogenously
distributed then first
cluster analysis

choose center of basis
function from each
cluster, use cluster size
for setting σ

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
13

Radial Basis Function Nets (RBF Nets)

advantages:

• additional training patterns → only local adjustment of weights

• optimal weights determinable in polynomial time

• regions not supported by RBF net can be identified by zero outputs

(if output close to zero, verify that output of each basis function is close to zero)

disadvantages:

• number of neurons increases exponentially with input dimension

• unable to extrapolate (since there are no centers and RBFs are local)

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
14

Radial Basis Function Nets (RBF Nets)

Example: XOR via RBF

training data: (0,0), (1,1) with value –1
(0,1), (1,0) with value +1

choose Gaussian kernel; set σ = 1; set centers ci to training points

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
15

Radial Basis Function Nets (RBF Nets)

Example: XOR via RBF

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
16

Hopfield Network

proposed 1982

characterization:

• neurons preserve state until selected at random for update

• bipolar states: x ∈ { -1, +1 }n

• n neurons fully connected

• symmetric weight matrix

• no self-loops (→ zero main diagonal entries)

• thresholds θ , neuron i fires if excitations larger than θi

energy of state x is

1

2 3

1

2

3

transition: select index k at random, new state is

where

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
17

Hopfield Network

Fixed Points

Definition

x is fixed point of a Hopfield network iff x = sgn(x‘ W - θ). □

Set W = x x‘ and choose θ with | θi | < n, where x ∈ {-1, +1}n.

→ sgn(x‘ W - θ) = sgn(x‘ (x x‘)) = sgn((x‘x) x‘ - θ) = sgn(|| x ||2 x‘ - θ)

Theorem:
If W = x x‘ and | θi | < n then x is fixed point of a Hopfield network. □

Example:

Note that || x ||2 = n for all x ∈ {-1, +1}n.

→ xi = +1: sgn(n ⋅ (+1) - θi) = +1 iff +n - θi ≥ 0 ⇔ θi ≤ +n
→ xi = −1: sgn(n ⋅ (−1) - θi) = −1 iff −n - θi < 0 ⇔ θi > −n

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
18

Hopfield Network (HN)

Concept of Energy Function

given: HN with W = x x‘ ⇒ x is stable state of HN

starting point x(0) ⇒ x(1) = sgn(x(0)‘ W - θ)

⇒ excitation e = W x(1) - θ

⇒ if sign(e) = x(0) then x(0) stable state

true if
e‘ close to x(0)

⇒small angle
between e‘ and x(0)

1

1

0

x(0) = (1, 1)

recall:

1

0

small angle α ⇒ large cos(α)

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
19

Hopfield Network (HN)

Concept of Energy Function

required:

small angle between e = W x(0) - θ and x(0)

⇒ larger cosine of angle indicates greater similarity of vectors

⇒ ∀e‘ of equal size: try to maximize x(0) e‘ = || x(0) || · || e || · cos ∠ (x(0) ,e)

fixed fixed → max!

⇒ maximize x(0)‘ e = x(0)‘ (W x(0) - θ) = x(0)‘ W x(0) - θ‘ x(0)

⇒ identical to minimize -x(0)‘ W x(0) + θ‘ x(0)

Definition

Energy function of HN at iteration t is E(x(t)) = – x(t)‘ W x(t) + θ‘ x(0) □1
2
–

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
20

Hopfield Network

Theorem:

Hopfield network converges to local minimum of energy function after a finite
number of updates. □

Proof: assume that xk has been updated

= 0 if i ≠ k

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
21

Hopfield Network

= 0 if j ≠ k

(rename j to i, recall W = W‘, wkk = 0)

excitation ek

> 0 if xk < 0 and vice versa

> 0 since:

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
22

Hopfield Network

⇒ every update (change of state) decreases energy function

⇒ since number of different bipolar vectors is finite
update stops after finite #updates

remark: dynamics of HN get stable in local minimum of energy function!

q.e.d.

⇒ Hopfield network can be used to optimize combinatorial optimization problems!

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
23

Hopfield Network

Application to Combinatorial Optimization

Idea:

• transform combinatorial optimization problem as objective function with x ∈ {-1,+1}n

• rearrange objective function to look like a Hopfield energy function

• extract weights W and thresholds θ from this energy function

• initialize a Hopfield net with these parameters W and θ

• run the Hopfield net until reaching stable state (= local minimizer of energy function)

• stable state is local minimizer of combinatorial optimization problem

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
24

Hopfield Network

Example I: Linear Functions

Evidently:

⇒

⇒ fixed point reached after Θ(n log n) iterations on average
[proof: → black board]

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
25

Hopfield Network

Example II: MAXCUT

given: graph with n nodes and symmetric weights ωij = ωji , ωii = 0, on edges

task: find a partition V = (V0, V1) of the nodes such that the weighted sum of edges
with one endpoint in V0 and one endpoint in V1 becomes maximal

encoding: ∀ i=1,...,n: yi = 0 , node i in set V0; yi = 1 , node i in set V1

objective function:

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to “Hopfield normal form“

step 4: extract coefficients as weights and thresholds of Hopfield net

Lecture 14

step 2: transformation of variables
⇒ yi = (xi+1) / 2

⇒

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
26

Hopfield Network

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

⇒ multiply function with -1 ⇒ E(y) = -f(y) → min!

constant value (does not affect location of optimal solution)

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
27

Hopfield Network

Example II: MAXCUT (continued)

step 4: extract coefficients as weights and thresholds of Hopfield net

step 3: transformation to “Hopfield normal form“

wij

0‘

remark:

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27

