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Approximative Reasoning

So far:
e p:IF XisATHEN Yis B

— R(x,'y) = Imp(A(x), B(y) )

e rule: IF XisATHEN Yis B
fact: Xis A
conclusion: Yis B¢

— B'(y) = sup,x t(A(x), R(x, y) )

Thus:
e B(y) = sup,x t(A'(x), Imp(A(x), B(y) ))
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rule as relation; fuzzy implication

composition rule of inference

given  :fuzzy rule
input : fuzzy set A’

output : fuzzy set B
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Approximative Reasoning

special case:

crisp input!

1 forx=x,
A ) - 0 otherwise
Bly) = sup,x t(A'(x), Imp(A(x), B(y) ) )

sup t( 0, Imp(A(x), B(y) ))  for x # x,

X # Xg

t(1, Imp(A(xo), B(y) )) for x = x,

Imp(A(Xo), B(y) )
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for x # X, since t(0,a)=0

for x = x, since t(a, 1) =a 1
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Approximative Reasoning

Lemma:

a) t(a,1)=a

b) t(a,b)<min{a,b}

c) t0,a)=0

Proof: by a)
ad a) Identical to axiom 1 of t-norms. /

ad b) From monotonicity (axiom 2) follows for b < 1, that t(a, b) < t(a, 1) = a.
Commutativity (axiom 3) and monotonicity lead in case ofa <1 to
t(a, b) = t(b, a) = t(b, 1) = b. Thus, t(a, b) is less than or
equal to a as well as b, which in turn implies t(a, b) < min{ a, b }.

ad c) From b) follows 0 < t(0, a) < min {0, a } = 0 and therefore t(0, a) = 0. n
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Approximative Reasoning

Multiple rules:

— Ri(x, y) = Imp,(A4(x), B4(y) )
— Ry(x, y) = Imp,( Ay(x), By(y) )
— Ry(x, y) = Imp;( Az(x), Ba(y) )

IF X is A,, THEN Y is B,
IF Xis A, THEN Yis B,
IF X is Ay, THEN Y is B,
IF XisA,, THEN Y is B, — Ry(x, y) = Imp,(A,(x), Bi(y) )
Xis A
Yis B’

Multiple rules for fuzzy input: A‘(x) is given
By'(y) = supyex t(A'(X), Ry(X, ¥) )

B,A(Y) = SUp,x t(AX), Ry(x, y))

aggregation of rules or
local inferences necessary!

min

aggregate! = B'(y) = aggr{B;(y). ..., B,(y) }, where aggr = { max
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Approximative Reasoning

FITA: “First inference, then aggregate!”

1. Each rule of the form IF Xis A, THEN Y'is B, must be transformed by
an appropriate fuzzy implication Imp,(-,+) to a relation R, :
Ri(X, y) = Imp, ( Ag(x), By(y) ).

2. Determine B,'(y) = Ri(x, y) e A'(x) for allk = 1, ..., n (local inference).
3. Aggregate to B(y) = B(B4'(y), ..., By'(y) ).

FATI: “First aggregate, then inference!”

1. Each rule of the form IF Xist A, THEN Y ist B, must be transformed by
an appropriate fuzzy implication Imp,(-, -) to a relation R, :
Ri(x, y) = Impy( A((X), Bi(y) ).

2. Aggregate Ry, ..., R, to a superrelation with aggregating function a(-):
R(x, ¥) = a( Ry(x, ¥), ..., Ry(x, y) ).

3. Determine B'(y) = R(x, y) ° A(x) w.r.t. superrelation (inference).
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Approximative Reasoning

1. Which principle is better? FITA or FATI?

2. Equivalence of FITA and FATI ?

FITA: B'(y) = B(B4(y), ... Bi'(¥))
ﬁ( R1(X1 y) ° A‘(X)’ Tty Rn(X’ y) OA‘(X) )

FATI: B'(y) R(x, y) °c A(x)

(X( R‘I(X’ y)’ R Rn(X1 y) ) ° A‘(X)

— general case: no further analysis without simplifying assumptions ...
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Approximative Reasoning

special case:
Ax) =

1 forx=x,

crisp input! «

0 otherwise

On the equivalence of FITA and FATI:

FITA: B'(y) = B(B(y), .-, By'(Y))
= B(Imp;(A;(X0), B1(Y) ), ..., Imp,(A,(Xg), Bn(y) ) )
FATI: B'(y) = R(x,y)°A(X)

= sup,.x t(A(x), R(x, y)) (from now: special case)
R(XO! y)

(X( Imp'](A‘l(XO)’ B‘I(Y) )’ Tt Irnpn( An(XO)’ Bn(y) ) )

FATI = FITA if sup-t-composition with same t-norm, o(-) = B(-), same Imp;(), and ... —
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Approximative Reasoning

o AND-connected premises
IF X, =A;;AND X, =A,, AND ... AND X, =A,,, THEN Y = B,
IF X,=A,;AND X, =A,AND ... AND X, =A,, THENY =B,
reduce to single premise for each rule k:
AXy,. s Xm) = Min {AG(X), Aa(Xa), - Agn(Xim) }

or in general: t-norm

e OR-connected premises
IFX;=A;;ORX,=A;,0R...ORX_,=A,, THENY =B,

IFX,=A,;ORX,=A,0R...ORX_,=A,, THENY =B,
reduce to single premise for each rule k:

A(Xgy ey Xe) = Max { Agy(X1), Aa(Xa)s s Agn(Xim) } or in general: s-norm
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Approximative Reasoning

important:

o if rules of the form IF X is A THEN Y is B interpreted as logical implication
= R(X, y) = Imp( A(x), B(y) ) makes sense

e we obtain: B(y) = sup,.x t(A'(x), R(X, y) )

interpretation of output set B‘(y):

e B'(y) is the set of values that are possible under the particular rule

e each rule leads to a different restriction of the values that are possible
e must determine set of values that are possible for all rules

= resulting fuzzy sets B',(y) obtained from single rules must be mutually intersected!

= aggregation via B‘(y) = min { B;'(y), ..., B,'(y) } . R,
8|
B1
—_—
A
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Approximative Reasoning

important:

o if rules of the form IF X'is ATHEN Yis B are not interpreted as logical
implications, then the function Fct(¢) in

R(x, y) = Fct(A(x), B(y) )
can be chosen as required for desired interpretation.
e frequent choice (especially in fuzzy control):
- R(x, y) = min {A(x), B(y) }
-R(x, y) =A(x) - B(y)
= of course, they are no implications but specific t-norms!

Mamdani — “implication’

Larsen — “implication®

= thus, if relation R(x, y) is given,
then the composition rule of inference

| B(y) =A(X)° R(x, y) = sup,x min {A(x), R(x,y)} |

still can lead to a conclusion via fuzzy logic.
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Approximative Reasoning

example: [JM96, S. 244ff.]
industrial drill machine — control of cooling supply

modelling

linguistic variable : rotation speed
linguistic terms : very low, low, medium, high, very high
ground set : X with 0 < x < 18000 [rpm]

1

1000 5000 9000 13000 17000 rotation

speed
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

modelling

linguistic variable : cooling quantity
linguistic terms : very small, small, normal, much, very much
ground set 2 Y with 0 <y < 18 [liter / time unit]

1
vs s n m vm,

1 5 9 13 17 cooling
quantity
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

rule base

IF rotation speed IS very low THEN cooling quantity IS very small

low small
medium normal
high much
very high very much

T T

sets S, S;, Sy Sy Sun sets C,s, Cq, C,,, C, Ciy

“rotation speed” “cooling quantity”
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

1. input: crisp value x, =10 000 min-' (not a fuzzy set!)
— fuzzyfication = determine membership for each fuzzy set over X

— yields S'= (0, 0, %, %4, 0) via x = ( S,i(Xo), Si(Xo), Sm(Xo), Sh(Xo), Sun(*o) )

2. FITA: local inference
Sui Cls(y) =Imp(0, Cy(y))
S Ciy) =Imp(0, Cy(y))
Smi Ch(y) =Imp(%, C.(y) )
S Clu(y) =1mp(“s, C(y) )
Sini Cum(y) =1Imp(0, Cy(y) )

= note: Imp(0,a) = 1 (axiom 3)

Must we replace
logical Imp() by
technical relation?
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

in case of control task typically no logic-based interpretation:
— max-aggregation and
— relation R(x,y) not interpreted as implication.

often: R(x,y) = min(A(x), B(y)) .Mamdani controller®

2. FITA: local inference

Svl: C,vs(y) = mm( 0! Cvs(y) ) =0

S Csly) =min(0,C(y)) =0

S, C.(y) =min(%,C.(y)) 20 ¢ = since min(0,a) = 0 and max-aggr.
meoon " we only need to consider C, and C,,

Sy Chly) =min(%, Coly)) 20

Svh: C,vm(y) = mln( 0’ Cvm(y) ) =0 -

« %’ dortmund
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

3. aggregation:
C(y) = aggr { C'(y), C'n(y) } = max { min( %, C.(y) ), min( %, C,(y) ) }

Remark:
This approach can be applied with every t-norm and max-aggregation
= C'(y) = max {t( %, C.(y) ), t( 74, Cy(y) ) }

— graphical illustration
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Approximative Reasoning

example: (continued)
industrial drill machine — control of cooling supply
C(y) = max { min { %, C.(y) }, min { ¥4, C.,(y) } }, X, = 10 000 [rpm]

vl 1 m

1000 5000 9000 13000 17000 1 5 9 13 17

rotation speed cooling quantity
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Fuzzy Control

open and closed loop control:

affect the dynamical behavior of a system
in a desired manner

e open loop control

control is aware of reference values and has a model of the system
= control values can be adjusted,
such that process value of system is equal to reference value

problem: noise! = deviation from reference value not detected

e closed loop control

now: detection of deviations from reference value possible
(by means of measurements / sensors)
and new control values can take into account the amount of deviation
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Fuzzy Control

open loop control

Q
o)
)
) ,
%
%

w u y
—_— _— _—
reference process

value value
control system
process

assumption: undisturbed operation = process value = reference value
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Fuzzy Control

closed loop control

noise
C
o)
7,
(N , d
L7
%

w u y
—_— —_— —_—
reference — process
value value
control system

process

control deviation = reference value — process value
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Fuzzy Control

required:

model of system / process
— as differential equations or difference equations (DEs)

— well developed theory available

so, why fuzzy control?

e if there exists no process model in form of DEs etc.
(operator/human being has realized control by hand)

e if process with high-dimensional nonlinearities — no classic methods available

e if control goals are vaguely formulated (,soft* changing gears in cars)
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Fuzzy Control

fuzzy description of control behavior

IF XisA;, THEN Y is B,
IF XisA,, THEN Y is B,
IF XisA;, THEN Y is B,
> similar to approximative reasoning
IFXisA, THENYis B,
Xis A’

Y is B

but fact A is not a fuzzy set but a crisp input

— actually, it is the current process value

fuzzy controller executes inference step

— yields fuzzy output set B'(y)

but crisp control value required for the process / system

— defuzzification (= “condense” fuzzy set to crisp value)
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Fuzzy Control

defuzzification Def: rule k active < A,(xg) > 0

e maximum method

- only active rule with largest activation level is taken into account

— suitable for pattern recognition / classification

— decision for a single alternative among finitely many alternatives
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: discontinuous curve of output values (leaps)

g = argmax B'(y)
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Fuzzy Control

defuzzification Y*={y e Y: By) = hgt(B) }

e maximum mean value method

- all active rules with largest activation level are taken into account

— interpolations possible, but need not be useful

— obviously, only useful for neighboring rules with max. activation
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

- 1 ¥
useful solution? — ]
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Fuzzy Control

defuzzification Y*={y e Y: By) = hgt(B‘) }

e center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account
— interpolations possible, but need not be useful
— obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

infY*+supY*

g:
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Fuzzy Control

defuzzification
e Center of Gravity (COG)
- all active rules are taken into account
— but numerically expensive ... ...only valid for HW solution, today!
— borders cannot appear in output ( 3 work-around )
- if only single active rule: independent from activation level

- continuous curve for output values

Jy-B'(y)dy
I B'(y) dy

g:
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Fuzzy Control

!
rcursion: COG Gy B@)dy
xcursion: -
I B'(y) dy
BYy) pendar!t_ in
probability theory:
1 expectation value
% :;,77_._ vy
triangle: trapezoid:
=y1+y2+y3 g:y§+y§—y%—y%+y3y4—y1y2
3 3(a+tyz—y2—y1)

Y1 Y2 Y3 Y2 Y3 Ya
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Fuzzy Control

z=B'(y)

- Jy-B'(y)dy
1 v =

[ B'(y) dy

| T T T T T T

Y1 1z Ya Vs Ys Ye
assumption: fuzzy membership functions piecewise linear
output set B‘(y) represented by sequence of points (Y4, 1), (Y2, Z5), -+ (Yrs Z)
= area under B‘(y) and weighted area can be determined additively piece by piece
= linear equationz=my+b —insert(y, z)and (Yi«1,Zj)

= yields m and b for each of the n-1 linear sections

"Yi+1 m
= F, = /y (my4b)dy = E(yi2+1—yi2)+b(yi+1_yi) Z Gz
i ~ 7
Yy =
Yi+1 m b F;
=>G; = /y y (my+b)dy = g(yz'3+l_yz'3)+§(yi2+1_yi2) ; !
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Fuzzy Control

Defuzzification
e Center of Area (COA)
« developed as an approximation of COG
* let §, be the COGs of the output sets B’/ (y):

>k Ak (o) - Uk
>k Ak (o)

<«

how to:
assume that fuzzy sets A,(x) and B,(x) are triangles or trapezoids
let x, be the crisp input value
for each fuzzy rule “IF A, is X THEN B, is Y*
determine B',(y) = R( A (Xp), Bi(y) ), where R(.,.) is the relation
find y, as center of gravity of B, (y)
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Fuzzy Control

Putting all together:

defuzzified
output

Xo
crisp input

— map controller (german: Kennfeldregler)
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