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Plan for Today

● Deep Neural Netwoks

 Model

 Training

● Convolutional Neural Netwoks

 Model

 Training
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Deep Neural Networks (DNN)

DNN = Neural Network with > 3 layers

we know:   3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?
information stored in weights of edges of network
→ more layers → more neurons → more edges → more information storable

Which additional information storage is useful?
traditionally : handcrafted features fed into 3-layer perceptron
modern viewpoint : let L-1 layers learn the feature map, last layer separates!

advantage:
human expert need not design features manually for each application domain
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Deep Multi-Layer Perceptrons

- danger: overfitting
→ need larger training set (expensive!)
→ optimization needs more time

- response landscape changes
→ more sigmoidal activiations
→ gradient vanishes
→ small progress in learning weights

contra:
- regularization / dropout

→ data augmentation
→ parallel hardware (multi-core / GPU)

- not necessarily bad
→ change activation functions
→ gradient does not vanish
→ progress in learning weights

countermeasures:

vanishing gradient:

forward pass  y = f3(f2(f1(x; w1); w2); w3)

backward pass  (f3(f2(f1(x; w1); w2); w3))‘ = 
f3‘(f2(f1(x;w1);w2);w3) · f2‘(f1(x;w1);w2) · f1‘(x;w1) chain rule!

→ repeated multiplication of values in (0,1) → 0
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Deep Neural Networks

non-sigmoid activation functions
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dropout

Deep Neural Networks

- applied for regularization (against overfitting) 
- can be interpreted as inexpensive approximation of bagging

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

→

- parts of network is effectively switched off
e.g. multiplication of outputs with 0, 
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5

- gradient descent on switching parts of network
→ artificial perturbation of greediness during gradient descent

- can reduce computational complexity if implemented sophistically
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Deep Neural Networks

data augmentation

→ extending training set by slightly perturbed true training examples

- best applicable if inputs are images: translate, rotate, noise, …

- if x is real vector then adding e.g. small gaussian noise
→ here, utility disputable (actually needs sample from unseen subsets)

extra costs for acquiring additional annotated data are inevitable!
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stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases

update of weights
- after each training example b =  1
- after all training examples b = |B| 

now:   

update of weights
- after b training examples

where 1 < b < |B|

- search in subspaces → counteracts greediness → better generalization

- accelerates optimization methods (parallelism possible)

choice of batch size b
b large ⇒ better approximation of gradient
b small ⇒ better generalization

b also depends on available hardware
b too small ⇒ multi-cores underemployed

often b ≈ 100  (empirically)
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• regression

N training samples (xi, yi)

insist that f(xi;  θ) = yi for i=1,…, N

if f(x; θ) linear in θ then θTxi = yi for i=1,…, N  or X θ = y

⇒ best choice for θ:   least square estimator (LSE)

⇒ (X θ - y)T (X θ - y)  → min!
θ

in case of MLP: f(x; θ) is nonlinear in θ

⇒ best choice for θ:   (nonlinear) least square estimator; aka TSSE

⇒ Σ (f(xi; θ) – yi)2 → min!
θi
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• classification

N training samples (xi, yi) where yi ∈ { 1, …, C }, C = #classes

→ want to estimate probability of different outcomes

→ decision rule: choose class with highest probability

idea: use maximum likelihood estimator (MLE)

= estimate unknown parameter θ such that likelihood of sample x1, …, xN

gets maximal as a function of θ

likelihood function

θ
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here: random variable X ∈ {1, …, C } with P{ X = i } = qi (true, but unknown)

→ we use relative frequencies of training set x1, …, xN as estimator of qi
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in case of classification
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Convolutional Neural Networks

layer of CNN = 3 stages

most often used in graphical applications (2-D input; also possible: k-D tensors)

1. convolution
2. nonlinear activation (e.g. ReLU)
3. pooling

I(x,y) K(i,j) -1 -2 -1

1 1 1

-2 1 -2

example

1. Convolution
local filter / kernel K(i, j) applied to each cell of image I(x, y)
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Convolutional Neural Networks

filter / kernel
well known in image processing; typically hand-crafted!

e.g. horizontal line detection

1 1 1 1

1 1 1 1

-1 -1 -1 -1

-1 -1 -1 -1

here: values of filter matrix learnt in CNN !

actually: many filters active in CNN

stride
= distance between two applications of a filter (horizontal sh / vertical sv)
→ leads to smaller images if sh or sv > 1

padding

= treatment of border cells if filter does not fit in image
• “valid“ : apply only to cells for which filter fits → leads to smaller images
• “same“ : add rows/columns with zero cells; apply filter to all cells (→ same size)  
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Convolutional Neural Networks

2. nonlinear activation

a(x) = ReLU(xT W + c)

3. pooling

in principle: summarizing statistic of nearby outputs

e.g. max-pooling m(i,j) = max( z(i+a, j+b) : a,b = -d, …, 0, … d ) for d > 0 

- also possible: mean, median, matrix norm, …

- can be used to reduce matrix / output dimensions
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Convolutional Neural Networks

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts

- flatten layer (→ converts k-D matrix to 1-D matrix required for MLP input layer) 

- fully connected MLP

2-D input layer

convolution layer 1

convolution layer 2

convolution layer k

flatten layer

MLP 

…

2-D input layer

convolution layer 1a convolution layer 2a

concatenate

MLP 

convolution layer 1b convolution layer 2b

flatten layer flatten layer

examples:
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