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e Deep Neural Netwoks
= Model

= Training

e Convolutional Neural Netwoks
= Model

= Training
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Deep Neural Networks (DNN)

DNN = Neural Network with > 3 layers

we know: 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?

information stored in weights of edges of network
— more layers — more neurons — more edges — more information storable

Which additional information storage is useful?

traditionally : handcrafted features fed into 3-layer perceptron
modern viewpoint: let L-1 layers learn the feature map, last layer separates!

H_/

advantage:
human expert need not design features manually for each application domain
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Deep Multi-Layer Perceptrons

contra:
- danger: overfitting
— need larger training set (expensive!)
— optimization needs more time
- response landscape changes
— more sigmoidal activiations
— gradient vanishes
— small progress in learning weights

vanishing gradient:

forward pass

backward pass

y = f3(fo(FL(X; W) W,); wa)

(Fa(Fa(FL (6 Wy); Wy); W) =
f3' (F(FL 06w )swp)iwp) - £ (FL (s wp)swp) - (G wy)

countermeasures:
- regularization / dropout

— data augmentation
— parallel hardware (multi-core / GPU)

- not necessarily bad

— change activation functions
— gradient does not vanish
— progress in learning weights

chain rule!

— repeated multiplication of values in (0,1) — 0
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Deep Neural Networks

non-sigmoid activation functions
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Deep Neural Networks

dropout
- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

!

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

- parts of network is effectively switched off
e.g. multiplication of outputs with 0,
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5

- gradient descent on switching parts of network
— artificial perturbation of greediness during gradient descent

- can reduce computational complexity if implemented sophistically
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Deep Neural Networks

data augmentation

— extending training set by slightly perturbed true training examples

- best applicable if inputs are images: translate, rotate, noise, ...

- ifxisreal vector then adding e.g. small gaussian noise
— here, utility disputable (actually needs sample from unseen subsets)

extra costs for acquiring additional annotated data are inevitable!
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Deep Neural Networks
stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases now:

update of weights
- after each training example
- after all training examples

update of weights
b=1 - after b training examples
b = |B| where 1 <b < |B|

- search in subspaces — counteracts greediness — better generalization

- accelerates optimization methods (parallelism possible)

choice of batch size b

blarge = better approximation of gradient

b small = better generalization o
often b =100 (empirically)

b also depends on available hardware

b too small = multi-cores underemployed
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Deep Neural Networks

cost functions

® regression
N training samples (x;, y;)
insist that f(x; 6) =y; fori=1,..., N
if f(x; 0) linear in 6 then 07, = y; for i=1,..., N or X0 =y
= best choice for 0: least square estimator (LSE)
=>X0-y)T(X0-y) —>mein!

in case of MLP: f(x; 0) is nonlinear in 6

= best choice for 0: (nonlinear) least square estimator; aka TSSE

= Z (f(x; 0) — y;)2 — min!
i 0
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Deep Neural Networks

cost functions

* classification
N training samples (x;, y;) wherey, € {1, ..., C}, C = #classes
— want to estimate probability of different outcomes

— decision rule: choose class with highest probability

idea: use maximum likelihood estimator (MLE)
= estimate unknown parameter 0 such that likelihood of sample x;, ..., Xy

gets maximal as a function of 6

likelihood function
L0y, ....¢n8) = fxy. xn (@10

N
N 0) = fo (x:;0) — nlaax!

1=1
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Deep Neural Networks
here: random variable X € {1, ..., C} with P{ X =i} =q; (true, but unknown)

— We use relative frequencies of training set X,, ..., Xy @s estimator of g;

; N
I < N
0=~ > 1,-; = thereare N - samples of class i in training set

Jj=1

= the neural network should output p as close as possible to ¢ !

N c
likelihood L(p;xy,...,xn) = H P{X; =} = H]A)}V'Q’ — max!
k=1 i=1

C

C C
log L = log ( f)}w'q’> = Zlogﬁ;\'q" =N Z(jf -log p; — max!
i=1
———

i=1 =1
—H(q.p)
= maximizing log L leads to same solution as minimizing cross-entropy H (g, p)
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Deep Neural Networks

in case of classification

(,’11“’/’-.1'-4-/)_,

use softmax function P{y = j |z} = - in output layer

¢ IL"I.J'jL
Do €
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Convolutional Neural Networks

most often used in graphical applications (2-D input; also possible: k-D tensors)

layer of CNN = 3 stages

I(x.y) KGjp [1]-2]-1

1. convolution 1111

2. nonlinear activation (e.g. ReLU) 20112
3. pooling

example

1. Convolution

local filter / kernel K(i, j) applied to each cell of image I(x, y)

4 1)
S(a,y) = (K« D(a,y) = 3

i=—8 j=—6

Iz —i,y—7) K(J)
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Convolutional Neural Networks

filter / kernel

well known in image processing; typically hand-crafted! 1 1 1 1
here: values of filter matrix learnt in CNN ! 1111
101 1 -1

actually: many filters active in CNN
-1 -1 -1

e.g. horizontal line detection

stride

= distance between two applications of a filter (horizontal s,, / vertical s,)
— leads to smaller images if s, or s, > 1

padding

treatment of border cells if filter does not fit in image

“valid” : apply only to cells for which filter fits — leads to smaller images
“same” : add rows/columns with zero cells; apply filter to all cells (— same size)
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Convolutional Neural Networks

2. nonlinear activation

a(x) = ReLU(XT W + c)

3. pooling

in principle: summarizing statistic of nearby outputs

e.g. max-pooling m(i,j) = max( z(i+a, j+b) :a,b=-d, ..., 0, ...d ) ford >0
- also possible: mean, median, matrix norm, ...

- can be used to reduce matrix / output dimensions
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Convolutional Neural Networks

CNN architecture:
- several consecutive convolution layers (also parallel streams); possibly dropouts
- flatten layer (— converts k-D matrix to 1-D matrix required for MLP input layer)

- fully connected MLP

examples:
2-D input layer 2-D input layer
v v v

convolution layer 1 convolution layer 1a convolution layer 2a

v v v

convolution layer 2 convolution layer 1b convolution layer 2b
v v v
K flatten layer flatten layer

convolution layer k \ /
v

flatten layer concatenate
¥ ¥
MLP MLP
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