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Plan for Today 

 

●  Multi-Layer-Perceptron 

 Model 

 Backpropagation 
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What can be achieved by adding a layer? 

● Single-layer perceptron (SLP) 
 

   ⇒ Hyperplane separates space in two subspaces 
 

● Two-layer perceptron 
 

   ⇒ arbitrary convex sets can be separated 
 

● Three-layer perceptron 
 

   ⇒ arbitrary sets can be partitioned into convex subsets, 

P 

N 

connected by 
AND gate in 

2nd layer 

convex subsets representable by 2nd layer, 

resulting sets can be combined in 3rd layer 

⇒ more than 3 layers not necessary (in principle) 

Multi-Layer Perceptron (MLP) 

convex sets 
of 2nd layer 

connected by 
OR gate in 
3rd layer 
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XOR with 3 neurons in 2 steps 

x1 x2 y1 y2 z 

0 0 0 1 0 

0 1 1 1 1 

1 0 1 1 1 

1 1 1 0 0 

≥ 2 

x1 

x2 

-1 1 

-1 

y1 

z 

1 y2 

1 

 1 

convex set 

Multi-Layer Perceptron (MLP) 
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XOR with 3 neurons in 2 layers 

x1 x2 y1 y2 z 

0 0 0 0 0 

0 1 0 1 1 

1 0 1 0 1 

1 1 0 0 0 

≥ 1 

≥ 1 

x1 

x2 

-1 1 

1 

y1 

z 

≥ 1 1 y2 

1 

-1 

without AND gate in 2nd layer 

Multi-Layer Perceptron (MLP) 

x1 – x2 ≥  1 
x2 – x1 ≥  1  

x2 ≤  x1 – 1 
x2 ≥  x1 + 1  

, 
1 

1 
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XOR can be realized with only 2 neurons! 

≥ 2 ≥ 1 

x1 

x2 

1 

1 

-2 
1 

1 

y z 

x1 x2 y -2y x1-2y+x2 z 

0 0 0 0 0 0 

0 1 0 0 1 1 

1 0 0 0 1 1 

1 1 1 -2 0 0 

BUT: this is not a layered network (no MLP) ! 

Multi-Layer Perceptron (MLP) 
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Multi-Layer Perceptron (MLP) 

Evidently: 

MLPs deployable for addressing significantly more difficult problems than SLPs! 

But: 

How can we adjust all these weights and thresholds? 

Is there an efficient learning algorithm for MLPs? 

History: 

Unavailability of efficient learning algorithm for MLPs was a brake shoe ... 

... until Rumelhart, Hinton and Williams (1986): Backpropagation 

Actually proposed by Werbos (1974)  

... but unknown to ANN researchers (was PhD thesis) 
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Quantification of classification error of MLP 

● Total Sum Squared Error (TSSE) 

output of net  
for weights w and input x 

target output of net  
for input x 

● Total Mean Squared Error (TMSE) 

TSSE 

     # training patters # output neurons 
const. 

leads to same 
solution as TSSE 

Multi-Layer Perceptron (MLP) 
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Learning algorithms for Multi-Layer-Perceptron (here: 2 layers) 

... 

... 

... 

1 

... 

2 

m 

1 

2 

x1 

x2 

xn 

w11 

wnm 

u11 

f(wt, ut) = TSSE   →   min! 

Gradient method 

ut+1 = ut - γ ∇u f(wt, ut) 

wt+1 = wt - γ ∇w f(wt, ut) 

Multi-Layer Perceptron (MLP) 

idea: minimize error! 

BUT: 

f(w, u) cannot be differentiated! 

Why?  → Discontinuous activation function a(.) in neuron! 
θ 

0 
1 

idea: find smooth activation function similar to original function ! 
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good idea:  sigmoid activation function (instead of signum function) 
θ 

0 
1 

0 

1 

• monotone increasing 

• differentiable 

• non-linear 

• output ∈ [0,1] instead of ∈ { 0, 1 } 

• threshold θ integrated in 
  activation function e.g.: 

● 

● 

values of derivatives directly 
determinable from function 
values 

Multi-Layer Perceptron (MLP) 

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers) 
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Gradient method 

... 

... 

... 

1 

... 

2 

J 

1 

2 

x1 

x2 

xI 

w11 

wnm 

u11 

f(wt, ut) = TSSE 

ut+1 = ut - γ ∇u f(wt, ut) 

wt+1 = wt - γ ∇w f(wt, ut) 

K 

z1 

z2 

zK 

y1 

y2 

yJ 
yj : values after first layer 

zk: values after second layer 

xi : inputs 

yj = h(·) 

zk = a(·) 

Multi-Layer Perceptron (MLP) 

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers) 
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output of neuron j  
after 1st layer 

output of neuron k  
after 2nd layer 

error of input x: 

target output for input x output of net 

Multi-Layer Perceptron (MLP) 
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error for input x and target output z*: 

total error for all training patterns (x, z*) ∈ B: 

(TSSE) 
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gradient of total error: 

thus: 

and 

vector of partial derivatives w.r.t. 
weights ujk and wij 

Multi-Layer Perceptron (MLP) 
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assume:   ⇒ 

and: 

chain rule of differential calculus: 

outer 
derivative 

inner 
derivative 
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partial derivative w.r.t. ujk: 

“error signal“  δk 

Multi-Layer Perceptron (MLP) 
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partial derivative w.r.t. wij: 

error signal δk from previous layer 

factors 
reordered 

error signal δj from “current“ layer 
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Generalization (> 2 layers) 

Let neural network have L layers S1, S2, ... SL. 

Let neurons of all layers be numbered from 1 to N. 

All weights wij are gathered in weights matrix W. 

Let oj be output of neuron j. 

j ∈ Sm → 
neuron j is in 
m-th layer 

error signal: 

correction: 
in case of online learning:  
correction after each test pattern presented 

Multi-Layer Perceptron (MLP) 
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error signal of neuron in inner layer determined by 

● error signals of all neurons of subsequent layer and 

● weights of associated connections. 

⇒
 

● First determine error signals of output neurons, 

● use these error signals to calculate the error signals of the preceding layer, 

● use these error signals to calculate the error signals of the preceding layer,  

● and so forth until reaching the first inner layer. 

⇒
 

thus, error is propagated backwards from output layer to first inner 
⇒ backpropagation (of error) 
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⇒ other optimization algorithms deployable! 
in addition to backpropagation (gradient descent) also: 

● Backpropagation with Momentum 
   take into account also previous change of weights: 
 
 

● QuickProp 
   assumption: error function can be approximated locally by quadratic function, 
   update rule uses last two weights at step t – 1 and t – 2. 

● Resilient Propagation (RPROP) 
   exploits sign of partial derivatives: 
   2 times negative or positive → increase step size!  
   change of sign → reset last step and decrease step size! 
   typical values: factor for decreasing 0,5 / factor for increasing 1,2  

● Evolutionary Algorithms 
   individual = weights matrix 

Multi-Layer Perceptron (MLP) 
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Application Fields of ANNs 

Classification 

given: set of training patterns (input / output) output = label  
(e.g. class A, class B, ...) 

training patterns 
(known) 

weights 
(learnt) 

input 
(unknown) 

output 
(guessed) 

parameters 

phase I: 

train network 
 

phase II: 

apply network 
to unkown 
inputs for 
classification 
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Application Fields of ANNs 

Prediction of Time Series 

time series x1, x2, x3, ...       (e.g. temperatures, exchange rates, ...) 

task: given a subset of historical data, predict the future 

predictor 

... 

phase I: 

train network 
 

phase II: 

apply network 
to historical 
inputs for 
predicting 
unkown 
outputs 

training patterns:  

historical data where true output is known; 

error per pattern = 
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Application Fields of ANNs 

Prediction of Time Series: Example for Creating Training Data 

given: time series  10.5, 3.4, 5.6, 2.4, 5.9, 8.4, 3.9, 4.4, 1.7 

time window: k=3 

(10.5, 3.4, 5.6) 

known  
input 

2.4 

known  
output 

first input / output pair 

further input / output pairs: (3.4, 5.6, 2.4) 5.9 
(5.6, 2.4, 5.9) 8.4 

(2.4, 5.9, 8.4) 
(5.9, 8.4, 3.9) 

(8.4, 3.9, 4.4) 

3.9 
4.4 

1.7 

Lecture 11 

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19 
24 

Application Fields of ANNs 

Function Approximation (the general case) 

task: given training patterns (input / output), approximate unkown function 

→ should give outputs close to true unkown function for arbitrary inputs 

• values between training patterns are interpolated 

• values outside convex hull of training patterns are extrapolated 

x 
x 

x x 
x 

x 

x 

x : input training pattern 

: input pattern where output  
  to be interpolated 

: input pattern where output  
  to be extrapolated 


