
Computational Intelligence
Winter Term 2019/20

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
2

Plan for Today

● Multi-Layer-Perceptron

 Model

 Backpropagation

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
3

What can be achieved by adding a layer?

● Single-layer perceptron (SLP)

 ⇒ Hyperplane separates space in two subspaces

● Two-layer perceptron

 ⇒ arbitrary convex sets can be separated

● Three-layer perceptron

 ⇒ arbitrary sets can be partitioned into convex subsets,

P

N

connected by
AND gate in

2nd layer

convex subsets representable by 2nd layer,

resulting sets can be combined in 3rd layer

⇒ more than 3 layers not necessary (in principle)

Multi-Layer Perceptron (MLP)

convex sets
of 2nd layer

connected by
OR gate in
3rd layer

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
4

XOR with 3 neurons in 2 steps

x1 x2 y1 y2 z

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

≥ 2

x1

x2

-1 1

-1

y1

z

1 y2

1

 1

convex set

Multi-Layer Perceptron (MLP)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
5

XOR with 3 neurons in 2 layers

x1 x2 y1 y2 z

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

≥ 1

≥ 1

x1

x2

-1 1

1

y1

z

≥ 1 1 y2

1

-1

without AND gate in 2nd layer

Multi-Layer Perceptron (MLP)

x1 – x2 ≥ 1
x2 – x1 ≥ 1

x2 ≤ x1 – 1
x2 ≥ x1 + 1

,
1

1

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
6

XOR can be realized with only 2 neurons!

≥ 2 ≥ 1

x1

x2

1

1

-2
1

1

y z

x1 x2 y -2y x1-2y+x2 z

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 0 1 1

1 1 1 -2 0 0

BUT: this is not a layered network (no MLP) !

Multi-Layer Perceptron (MLP)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
7

Multi-Layer Perceptron (MLP)

Evidently:

MLPs deployable for addressing significantly more difficult problems than SLPs!

But:

How can we adjust all these weights and thresholds?

Is there an efficient learning algorithm for MLPs?

History:

Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation

Actually proposed by Werbos (1974)

... but unknown to ANN researchers (was PhD thesis)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
8

Quantification of classification error of MLP

● Total Sum Squared Error (TSSE)

output of net
for weights w and input x

target output of net
for input x

● Total Mean Squared Error (TMSE)

TSSE

 # training patters # output neurons
const.

leads to same
solution as TSSE

Multi-Layer Perceptron (MLP)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
9

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

...

...

...

1

...

2

m

1

2

x1

x2

xn

w11

wnm

u11

f(wt, ut) = TSSE → min!

Gradient method

ut+1 = ut - γ ∇u f(wt, ut)

wt+1 = wt - γ ∇w f(wt, ut)

Multi-Layer Perceptron (MLP)

idea: minimize error!

BUT:

f(w, u) cannot be differentiated!

Why? → Discontinuous activation function a(.) in neuron!
θ

0
1

idea: find smooth activation function similar to original function !

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
10

good idea: sigmoid activation function (instead of signum function)
θ

0
1

0

1

• monotone increasing

• differentiable

• non-linear

• output ∈ [0,1] instead of ∈ { 0, 1 }

• threshold θ integrated in
 activation function e.g.:

●

●

values of derivatives directly
determinable from function
values

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
11

Gradient method

...

...

...

1

...

2

J

1

2

x1

x2

xI

w11

wnm

u11

f(wt, ut) = TSSE

ut+1 = ut - γ ∇u f(wt, ut)

wt+1 = wt - γ ∇w f(wt, ut)

K

z1

z2

zK

y1

y2

yJ
yj : values after first layer

zk: values after second layer

xi : inputs

yj = h(·)

zk = a(·)

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
12

output of neuron j
after 1st layer

output of neuron k
after 2nd layer

error of input x:

target output for input x output of net

Multi-Layer Perceptron (MLP)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
13

error for input x and target output z*:

total error for all training patterns (x, z*) ∈ B:

(TSSE)

Multi-Layer Perceptron (MLP) Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
14

gradient of total error:

thus:

and

vector of partial derivatives w.r.t.
weights ujk and wij

Multi-Layer Perceptron (MLP)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
15

assume: ⇒

and:

chain rule of differential calculus:

outer
derivative

inner
derivative

Multi-Layer Perceptron (MLP) Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
16

partial derivative w.r.t. ujk:

“error signal“ δk

Multi-Layer Perceptron (MLP)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
17

partial derivative w.r.t. wij:

error signal δk from previous layer

factors
reordered

error signal δj from “current“ layer

Multi-Layer Perceptron (MLP) Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
18

Generalization (> 2 layers)

Let neural network have L layers S1, S2, ... SL.

Let neurons of all layers be numbered from 1 to N.

All weights wij are gathered in weights matrix W.

Let oj be output of neuron j.

j ∈ Sm →
neuron j is in
m-th layer

error signal:

correction:
in case of online learning:
correction after each test pattern presented

Multi-Layer Perceptron (MLP)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
19

error signal of neuron in inner layer determined by

● error signals of all neurons of subsequent layer and

● weights of associated connections.

⇒

● First determine error signals of output neurons,

● use these error signals to calculate the error signals of the preceding layer,

● use these error signals to calculate the error signals of the preceding layer,

● and so forth until reaching the first inner layer.

⇒

thus, error is propagated backwards from output layer to first inner
⇒ backpropagation (of error)

Multi-Layer Perceptron (MLP) Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20
20

⇒ other optimization algorithms deployable!
in addition to backpropagation (gradient descent) also:

● Backpropagation with Momentum
 take into account also previous change of weights:

● QuickProp
 assumption: error function can be approximated locally by quadratic function,
 update rule uses last two weights at step t – 1 and t – 2.

● Resilient Propagation (RPROP)
 exploits sign of partial derivatives:
 2 times negative or positive → increase step size!
 change of sign → reset last step and decrease step size!
 typical values: factor for decreasing 0,5 / factor for increasing 1,2

● Evolutionary Algorithms
 individual = weights matrix

Multi-Layer Perceptron (MLP)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
21

Application Fields of ANNs

Classification

given: set of training patterns (input / output) output = label
(e.g. class A, class B, ...)

training patterns
(known)

weights
(learnt)

input
(unknown)

output
(guessed)

parameters

phase I:

train network

phase II:

apply network
to unkown
inputs for
classification

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
22

Application Fields of ANNs

Prediction of Time Series

time series x1, x2, x3, ... (e.g. temperatures, exchange rates, ...)

task: given a subset of historical data, predict the future

predictor

...

phase I:

train network

phase II:

apply network
to historical
inputs for
predicting
unkown
outputs

training patterns:

historical data where true output is known;

error per pattern =

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
23

Application Fields of ANNs

Prediction of Time Series: Example for Creating Training Data

given: time series 10.5, 3.4, 5.6, 2.4, 5.9, 8.4, 3.9, 4.4, 1.7

time window: k=3

(10.5, 3.4, 5.6)

known
input

2.4

known
output

first input / output pair

further input / output pairs: (3.4, 5.6, 2.4) 5.9
(5.6, 2.4, 5.9) 8.4

(2.4, 5.9, 8.4)
(5.9, 8.4, 3.9)

(8.4, 3.9, 4.4)

3.9
4.4

1.7

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
24

Application Fields of ANNs

Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

→ should give outputs close to true unkown function for arbitrary inputs

• values between training patterns are interpolated

• values outside convex hull of training patterns are extrapolated

x
x

x x
x

x

x

x : input training pattern

: input pattern where output
 to be interpolated

: input pattern where output
 to be extrapolated

