
Computational Intelligence
Winter Term 2016/17

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
2

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
2

Plan for Today

● Approximate Reasoning

● Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
3

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
3

Approximative Reasoning

So far:

● p: IF X is A THEN Y is B

 → R(x, y) = Imp(A(x), B(y)) rule as relation; fuzzy implication

● rule: IF X is A THEN Y is B
 fact: X is A‘
 conclusion: Y is B‘

 → B‘(y) = supx∈X t(A‘(x), R(x, y)) composition rule of inference

Thus:

● B‘(y) = supx∈X t(A‘(x), Imp(A(x), B(y)))

given : fuzzy rule

input : fuzzy set A‘

output : fuzzy set B‘

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
4

x ≠ x0

B‘(y) = supx∈X t(A‘(x), Imp(A(x), B(y)))

 sup t(0, Imp(A(x), B(y)))

 =

 t(1, Imp(A(x0), B(y)))

for x ≠ x0

for x = x0

here:

A‘(x) =
1 for x = x0

0 otherwise
crisp input!

for x ≠ x0 since t(0, a) = 0

for x = x0 since t(a, 1) = a

 0

 =

 Imp(A(x0), B(y))

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
5

Lemma:

a) t(a, 1) = a

b) t(a, b) ≤ min { a, b }

c) t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for b ≤ 1, that t(a, b) ≤ t(a, 1) = a.
 Commutativity (axiom 3) and monotonicity lead in case of a ≤ 1 to
 t(a, b) = t(b, a) ≤ t(b, 1) = b. Thus, t(a, b) is less than or
 equal to a as well as b, which in turn implies t(a, b) ≤ min{ a, b }.

ad c) From b) follows 0 ≤ t(0, a) ≤ min { 0, a } = 0 and therefore t(0, a) = 0. ■

by a)

Approximative Reasoning Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
6

Multiple rules:

IF X is A1, THEN Y is B1
IF X is A2, THEN Y is B2
IF X is A3, THEN Y is B3
…
IF X is An, THEN Y is Bn
X is A‘

Y is B‘

→ R1(x, y) = Imp1(A1(x), B1(y))
→ R2(x, y) = Imp2(A2(x), B2(y))
→ R3(x, y) = Imp3(A3(x), B3(y))
…
→ Rn(x, y) = Impn(An(x), Bn(y))

Multiple rules for crisp input: x0 is given

B1‘(y) = Imp1(A1(x0), B1(y))
…
Bn‘(y) = Impn(An(x0), Bn(y))

aggregation of rules or
local inferences necessary!

aggregate! ⇒ B‘(y) = aggr{ B1‘(y), …, Bn‘(y) }, where aggr = min
max

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
7

FITA: “First inference, then aggregate!“

1. Each rule of the form IF X is Ak THEN Y is Bk must be transformed by
an appropriate fuzzy implication Impk(·,·) to a relation Rk :
Rk(x, y) = Impk(Ak(x), Bk(y)).

2. Determine Bk‘(y) = Rk(x, y) ◦ A‘(x) for all k = 1, …, n (local inference).

3. Aggregate to B‘(y) = β(B1‘(y), …, Bn‘(y)).

FATI: “First aggregate, then inference!“

1. Each rule of the form IF X ist Ak THEN Y ist Bk must be transformed by
an appropriate fuzzy implication Impk(·, ·) to a relation Rk :
Rk(x, y) = Impk(Ak(x), Bk(y)).

2. Aggregate R1, …, Rn to a superrelation with aggregating function α(·):
R(x, y) = α(R1(x, y), …, Rn(x, y)).

3. Determine B‘(y) = R(x, y) ◦ A‘(x) w.r.t. superrelation (inference).

Approximative Reasoning Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
8

2. Equivalence of FITA and FATI ?

FITA: B‘(y) = β(B1‘(y), …, Bn‘(y))

 = β(R1(x, y) ◦ A‘(x), …, Rn(x, y) ◦ A‘(x))

FATI: B‘(y) = R(x, y) ◦ A‘(x)

 = α(R1(x, y), …, Rn(x, y)) ◦ A‘(x)

1. Which principle is better? FITA or FATI?

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
9

special case:

A‘(x) =
1 for x = x0

0 otherwise
crisp input!

On the equivalence of FITA and FATI:

FITA: B‘(y) = β(B1‘(y), …, Bn‘(y))

 = β(Imp1(A1(x0), B1(y)), …, Impn(An(x0), Bn(y)))

FATI: B‘(y) = R(x, y) ◦ A‘(x)

 = supx∈X t(A‘(x), R(x, y)) (from now: special case)

 = R(x0, y)

 = α(Imp1(A1(x0), B1(y)), …, Impn(An(x0), Bn(y)))

evidently: sup-t-composition with arbitrary t-norm and α(·) = β(·)

Approximative Reasoning Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
10

● AND-connected premises

 IF X1 = A11 AND X2 = A12 AND … AND Xm = A1m THEN Y = B1
 …
 IF Xn = An1 AND X2 = An2 AND … AND Xm = Anm THEN Y = Bn

 reduce to single premise for each rule k:

 Ak(x1,…, xm) = min { Ak1(x1), Ak2(x2), …, Akm(xm) } or in general: t-norm

● OR-connected premises

 IF X1 = A11 OR X2 = A12 OR … OR Xm = A1m THEN Y = B1
 …
 IF Xn = An1 OR X2 = An2 OR … OR Xm = Anm THEN Y = Bn

 reduce to single premise for each rule k:

 Ak(x1,…, xm) = max { Ak1(x1), Ak2(x2), …, Akm(xm) } or in general: s-norm

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
11

important:

● if rules of the form IF X is A THEN Y is B interpreted as logical implication

 ⇒ R(x, y) = Imp(A(x), B(y)) makes sense

● we obtain: B‘(y) = supx∈X t(A‘(x), R(x, y))

⇒ the worse the match of premise A‘(x), the larger is the fuzzy set B‘(y)

⇒ follows immediately from axiom 1: a ≤ b implies Imp(a, z) ≥ Imp(b, z)

interpretation of output set B‘(y):

● B‘(y) is the set of values that are still possible

● each rule leads to an additional restriction of the values that are still possible

⇒ resulting fuzzy sets B‘k(y) obtained from single rules must be mutually intersected!

⇒ aggregation via B‘(y) = min { B1‘(y), …, Bn‘(y) }

Approximative Reasoning Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
12

important:

● if rules of the form IF X is A THEN Y is B are not interpreted as logical
 implications, then the function Fct(¢) in

 R(x, y) = Fct(A(x), B(y))

 can be chosen as required for desired interpretation.

● frequent choice (especially in fuzzy control):

- R(x, y) = min { A(x), B(x) } Mamdani – “implication“

- R(x, y) = A(x) · B(x) Larsen – “implication“

⇒ of course, they are no implications but specific t-norms!

⇒ thus, if relation R(x, y) is given,
 then the composition rule of inference

B‘(y) = A‘(x) ◦ R(x, y) = supx∈X min { A’(x), R(x, y) }

still can lead to a conclusion via fuzzy logic.

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
13

example: [JM96, S. 244ff.]

industrial drill machine → control of cooling supply

modelling

linguistic variable : rotation speed

linguistic terms : very low, low, medium, high, very high

ground set : X with 0 ≤ x ≤ 18000 [rpm]

1000 9000 5000 13000 17000 rotation
speed

vl l m h vh
1

Approximative Reasoning Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
14

example: (continued)

modelling

linguistic variable : cooling quantity

linguistic terms : very small, small, normal, much, very much

ground set : Y with 0 ≤ y ≤ 18 [liter / time unit]

1 9 5 13 17 cooling
quantity

vs s n m vm
1

Approximative Reasoning

industrial drill machine → control of cooling supply

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
15

rule base

IF rotation speed IS very low THEN cooling quantity IS very small

low

medium

high

very high

small

normal

much

very much

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

sets Svl, Sl, Sm, Sh, Svh sets Cvs, Cs, Cn, Cm, Cvm

“rotation speed” “cooling quantity”

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
16

1. input: crisp value x0 = 10000 min-1 (not a fuzzy set!)

→ fuzzyfication = determine membership for each fuzzy set over X

→ yields S’ = (0, 0, ¾, ¼, 0) via x  (Svl(x0), Sl(x0), Sm(x0), Sh(x0), Svh(x0))

2. FITA: locale inference ⇒ since Imp(0,a) = 0 we only need to consider:

Sm: C’n(y) = Imp(¾, Cn(y))

Sh: C’m(y) = Imp(¼, Cm(y))

3. aggregation:

C’(y) = aggr { C’n(y), C’m(y) } = max { Imp(¾, Cn(y)), Imp(¼, Cm(y)) }

?

?

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
17

C’(y) = max { Imp(¾, Cn(y)), Imp(¼, Cm(y)) }

in case of control task typically no logic-based interpretation:

→ max-aggregation and

→ relation R(x,y) not interpreted as implication.

often: R(x,y) = min(a, b) „Mamdani controller“

thus:

C‘(y) = max { min { ¾, Cn(y) }, min { ¼, Cm(y) } }

→ graphical illustration

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
18

C‘(y) = max { min { ¾, Cn(y) }, min { ¼, Cm(y) } }, x0 = 10000 [rpm]

1000 9000 5000 13000 17000

rotation speed

vl l m h vh
1

1 9 5 13 17

cooling quantity

vs s n m sm
1

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
19

Fuzzy Control

open and closed loop control:
affect the dynamical behavior of a system
in a desired manner

● open loop control

 control is aware of reference values and has a model of the system
 ⇒ control values can be adjusted,
 such that process value of system is equal to reference value

 problem: noise! ⇒ deviation from reference value not detected

● closed loop control

 now: detection of deviations from reference value possible
 (by means of measurements / sensors)
 and new control values can take into account the amount of deviation

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
20

open loop control

system
process

control

w u y

process
value

reference
value

assumption: undisturbed operation ⇒ process value = reference value

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
21

closed loop control

system
process

control

w u

d

y

noise

process
value

control deviation = reference value – process value

Fuzzy Control

reference
value

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
22

required:

model of system / process

→ as differential equations or difference equations (DEs)

→ well developed theory available

so, why fuzzy control?
● there exists no process model in form of DEs etc.
 (operator/human being has realized control by hand)

● process with high-dimensional nonlinearities → no classic methods available

● control goals are vaguely formulated („soft“ changing gears in cars)

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
23

fuzzy description of control behavior

but fact A‘ is not a fuzzy set but a crisp input

→ actually, it is the current process value

but crisp control value required for the process / system

→ defuzzification (= “condense” fuzzy set to crisp value)

fuzzy controller executes inference step

→ yields fuzzy output set B‘(y)

IF X is A1, THEN Y is B1
IF X is A2, THEN Y is B2
IF X is A3, THEN Y is B3
…
IF X is An, THEN Y is Bn
X is A‘

Y is B‘

similar to approximative reasoning

Fuzzy Control Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
24

defuzzification

● maximum method

- only active rule with largest activation level is taken into account

→ suitable for pattern recognition / classification

→ decision for a single alternative among finitely many alternatives

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: incontinuous curve of output values (leaps)

Def: rule k active ⇔ Ak(x0) > 0

0,5

t

0,5

B‘(y)

0,5

B‘(y)

0,5

B‘(y)

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
25

defuzzification

● maximum mean value method

- all active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y ∈ Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

useful solution? →

Fuzzy Control Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
26

defuzzification

● center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y ∈ Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

? 0,5

B‘(y)

?

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
27

defuzzification

● Center of Gravity (COG)

- all active rules are taken into account

→ but numerically expensive …

→ borders cannot appear in output (∃ work-around)

- if only single active rule: independent from activation level

- continuous curve for output values

…only valid for HW solution, today!

Fuzzy Control Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
28

Excursion: COG

triangle:

y1 y2 y3

trapezoid:

y1 y2 y4 y3

y

B‘(y)

1

pendant in
probability theory:
expectation value

1 3,77...

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
29

y

z=B‘(y)

1

y1 y2 y3 y4 y5 y6 y7

assumption: fuzzy membership functions piecewise linear

output set B‘(y) represented by sequence of points (y1, z1), (y2, z2), …, (yn, zn)

⇒ area under B‘(y) and weighted area can be determined additively piece by piece

⇒ linear equation z = m y + b) insert (yi, zi) and (yi+1,zi+1)

⇒ yields m and b for each of the n-1 linear sections

⇒

⇒

Fuzzy Control Lecture 08

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17
30

Defuzzification

● Center of Area (COA)

• developed as an approximation of COG

• let ŷk be the COGs of the output sets B’k(y):

Fuzzy Control

how to:
assume that fuzzy sets Ak(x) and Bk(x) are triangles or trapezoids
let x0 be the crisp input value
for each fuzzy rule “IF Ak is X THEN Bk is Y“
 determine B‘k(y) = R(Ak(x0), Bk(y)), where R(.,.) is the relation
 find ŷk as center of gravity of B‘k(y)

