Approximative Reasoning

So far:
• p: IF X is A THEN Y is B
 \[R(x, y) = \text{Imp}(A(x), B(y)) \]
 rule as relation; fuzzy implication

• rule: IF X is A THEN Y is B
 fact: X is A'
 conclusion: Y is B'
 \[B'(y) = \sup_{x \in X} t(A'(x), \text{Imp}(A(x), B(y))) \]
 composition rule of inference

Thus:
• $B'(y) = \sup_{x \in X} t(A'(x), R(x, y))$
 given: fuzzy rule
 input: fuzzy set A'
 output: fuzzy set B'

Plan for Today

- Approximate Reasoning
- Fuzzy Control
Lemma:

a) \(t(a, 1) = a \)

b) \(t(a, b) \leq \min \{ a, b \} \)

c) \(t(0, a) = 0 \)

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for \(b \leq 1 \), that \(t(a, b) \leq t(a, 1) = a \).

Commutativity (axiom 3) and monotonicity lead in case of \(a \leq 1 \) to \(t(a, b) = t(b, a) \leq t(b, 1) = b \) which in turn implies \(t(a, b) \leq \min \{ a, b \} \).

ad c) From b) follows \(0 \leq t(0, a) \leq \min \{ 0, a \} = 0 \) and therefore \(t(0, a) = 0 \). ■

Approximative Reasoning

2. Equivalence of FITA and FATI?

FITA: “First inference, then aggregate!”

1. Each rule of the form IF \(X \) is \(A_k \) THEN \(Y \) is \(B_k \) must be transformed by an appropriate fuzzy implication \(\text{Imp}_k(\cdot, \cdot) \) to a relation \(R_k \):
 \[R_k(x, y) = \text{Imp}_k(A_k(x), B_k(y)). \]

2. Determine \(B_k'(y) = R_k(x, y) \circ A'(x) \) for all \(k = 1, \ldots, n \) (local inference).

3. Aggregate to \(B'(y) = \beta(B_1'(y), \ldots, B_n'(y)) \).

FATI: “First aggregate, then inference!”

1. Each rule of the form IF \(X \) is \(A_k \) THEN \(Y \) is \(B_k \) must be transformed by an appropriate fuzzy implication \(\text{Imp}_k(\cdot, \cdot) \) to a relation \(R_k \):
 \[R_k(x, y) = \text{Imp}_k(A_k(x), B_k(y)). \]

2. Aggregate \(R_1, \ldots, R_n \) to a superrelation with aggregating function \(\alpha(\cdot) \):
 \[R(x, y) = \alpha(R_1(x, y), \ldots, R_n(x, y)). \]

3. Determine \(B'(y) = R(x, y) \circ A'(x) \) w.r.t. superrelation (inference).
Approximative Reasoning

Lecture 08

special case:

\[
A'(x) = \begin{cases}
1 & \text{for } x = x_0 \\
0 & \text{otherwise}
\end{cases}
\]

crisp input!

On the equivalence of FITA and FATI:

FITA:

\[
B'(y) = \beta(B_1'(y), \ldots, B_n'(y)) \\
= \beta(\text{Imp}_1(A_1(x_0), B_1(y)), \ldots, \text{Imp}_n(A_n(x_0), B_n(y)))
\]

FATI:

\[
B'(y) = R(x, y) \circ A'(x) \\
= \sup_{x \in X} t(A'(x), R(x, y))
\text{ (from now: special case) } \\
= \alpha(\text{Imp}_1(A_1(x_0), B_1(y)), \ldots, \text{Imp}_n(A_n(x_0), B_n(y)))
\]

evidently: sup-t-composition with arbitrary t-norm and \(\alpha(\cdot) = \beta(\cdot) \)

Important:

- if rules of the form IF X is A THEN Y is B interpreted as logical implication
 \[R(x, y) = \text{Imp}(A(x), B(y)) \]
 makes sense
- we obtain: \(B'(y) = \sup_{x \in X} \text{Imp}(A'(x), R(x, y)) \)
- the worse the match of premise \(A'(x) \), the larger is the fuzzy set \(B'(y) \)
 \[\Rightarrow \text{follows immediately from axiom 1: } a \leq b \Rightarrow \text{Imp}(a, z) \geq \text{Imp}(b, z) \]

interpretation of output set \(B'(y) \):

- \(B'(y) \) is the set of values that are still possible
- each rule leads to an additional restriction of the values that are still possible
 \[\Rightarrow \text{aggregation via } B'(y) = \min \{ B_1'(y), \ldots, B_n'(y) \} \]

Approximative Reasoning

Lecture 08

important:

- if rules of the form IF X is A THEN Y is B are not interpreted as logical implications, then the function \(\text{Fct}(\cdot) \) in
 \[
 R(x, y) = \text{Fct}(A(x), B(y))
 \]
 can be chosen as required for desired interpretation.
- frequent choice (especially in fuzzy control):
 - \(R(x, y) = \min \{ A(x), B(x) \} \) Mamdani – “implication”
 - \(R(x, y) = A(x) \cdot B(x) \) Larsen – “implication”
 \[\Rightarrow \text{of course, they are no implications but specific t-norms!} \]
 \[\Rightarrow \text{thus, if relation } R(x, y) \text{ is given,} \]
 then the composition rule of inference
 \[
 B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{ A(x), R(x, y) \}
 \]
 still can lead to a conclusion via fuzzy logic.
Approximative Reasoning

example: [JM96, S. 244ff.]

industrial drill machine → control of cooling supply

modelling
linguistic variable: rotation speed
linguistic terms: very low, low, medium, high, very high
ground set: X with 0 ≤ x ≤ 18000 [rpm]

example: (continued)

industrial drill machine → control of cooling supply

modelling
linguistic variable: cooling quantity
linguistic terms: very small, small, normal, much, very much
ground set: Y with 0 ≤ y ≤ 18 [liter / time unit]

rule base
IF rotation speed IS very low THEN cooling quantity IS very small

low small
medium normal
high much
very high very much

sets S_{vl}, S_{l}, S_{m}, S_{h}, S_{vh}

sets C_{v}, C_{s}, C_{m}, C_{nm}, C_{vm} “rotation speed”

“cooling quantity”

1. input: crisp value x_0 = 10000 min^{-1} (not a fuzzy set!)

→ fuzzyfication = determine membership for each fuzzy set over X

→ yields S' = (0, 0, \frac{3}{4}, \frac{1}{4}, 0) via x \mapsto (S_{vl}(x_0), S_{l}(x_0), S_{m}(x_0), S_{n}(x_0), S_{vh}(x_0))

2. FITA: locale inference ⇒ since Imp(0,a) = 0 we only need to consider:

S_{m}': C_{n}'(y) = \text{Imp}(\frac{3}{4}, C_{n}(y))

S_{h}': C_{m}'(y) = \text{Imp}(\frac{1}{4}, C_{m}(y))

3. aggregation:

C'(y) = \text{aggr}(C_{n}'(y), C_{m}'(y)) = \text{max}(\{ \text{Imp}(\frac{3}{4}, C_{n}(y)), \text{Imp}(\frac{1}{4}, C_{m}(y)) \})

approximation
Approximative Reasoning

example: (continued)

industrial drill machine \rightarrow control of cooling supply

$$C'(y) = \max \{ \text{Imp} \left(\frac{3}{4}, C_n(y) \right), \text{Imp} \left(\frac{1}{4}, C_m(y) \right) \}$$

in case of control task typically no logic-based interpretation:

\rightarrow max-aggregation and

\rightarrow relation $R(x,y)$ not interpreted as implication.

often: $R(x,y) = \min(a, b)$ „Mamdani controller“

thus:

$$C'(y) = \max \{ \min \left(\frac{3}{4}, C_n(y) \right), \min \left(\frac{1}{4}, C_m(y) \right) \}$$

\rightarrow graphical illustration

Fuzzy Control

open and closed loop control:

affect the dynamical behavior of a system in a desired manner

- **open loop control**

 control is aware of reference values and has a model of the system
 \Rightarrow control values can be adjusted,
 such that process value of system is equal to reference value

 problem: noise! \Rightarrow deviation from reference value not detected

- **closed loop control**

 now: detection of deviations from reference value possible
 (by means of measurements / sensors)
 and new control values can take into account the amount of deviation

Fuzzy Control

Lecture 08

- **Closed Loop Control**

![Diagram of closed loop control system](Diagram.png)

- **Control Deviation**

\[\text{control deviation} = \text{reference value} - \text{process value} \]

- **Model of System/Process**

- As differential equations or difference equations (DEs)
- Well developed theory available

- **Why Fuzzy Control?**

- No process model in form of DEs etc. (operator/human being has realized control by hand)
- Process with high-dimensional nonlinearities → no classic methods available
- Control goals are vaguely formulated ("soft" changing gears in cars)

- **Fuzzy Description of Control Behavior**

\[
\begin{align*}
\text{IF } X & \text{ is } A_1, \text{ THEN } Y \text{ is } B_1 \\
\text{IF } X & \text{ is } A_2, \text{ THEN } Y \text{ is } B_2 \\
\text{IF } X & \text{ is } A_3, \text{ THEN } Y \text{ is } B_3 \\
\ldots & \\
\text{IF } X & \text{ is } A_n, \text{ THEN } Y \text{ is } B_n \\
X & \text{ is } A' \\
Y & \text{ is } B'
\end{align*}
\]

- Similar to approximative reasoning
- Fact \(A' \) is not a fuzzy set but a crisp input
- Actually, it is the current process value

- Defuzzification

- Maximum method
 - Only active rule with largest activation level is taken into account
 - Suitable for pattern recognition / classification
 - Decision for a single alternative among finitely many alternatives
 - Selection independent from activation level of rule (0.05 vs. 0.95)
 - If used for control: incontinuous curve of output values (leaps)

- Def: rule k active \(\Leftrightarrow A_k(x_0) > 0 \)
defuzzification

- maximum mean value method
 - all active rules with largest activation level are taken into account
 → interpolations possible, but need not be useful
 → obviously, only useful for neighboring rules with max. activation
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - if used in control: incontinuous curve of output values (leaps)

\[Y^* = \{ y \in Y : B'(y) = \text{hgt}(B') \} \]

![Graph](image1)

- center-of-maxima method (COM)
 - only extreme active rules with largest activation level are taken into account
 → interpolations possible, but need not be useful
 → obviously, only useful for neighboring rules with max. activation level
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - in case of control: incontinuous curve of output values (leaps)

\[\bar{y} = \frac{\inf Y^* + \sup Y^*}{2} \]

![Graph](image2)

- Center of Gravity (COG)
 - all active rules are taken into account
 → but numerically expensive … …only valid for HW solution, today!
 → borders cannot appear in output (∃ work-around)
 - if only single active rule: independent from activation level
 - continuous curve for output values

\[\bar{y} = \frac{\int y \cdot B'(y) \, dy}{\int B'(y) \, dy} \]

Excursion: COG

- triangle:
 \[\bar{y} = \frac{y_1 + y_2 + y_3}{3} \]

- trapezoid:
 \[\bar{y} = \frac{y_1^2 + y_2^2 - y_2^2 - y_1^2 + y_3y_4 - y_1y_2}{3(y_4 + y_3 - y_2 - y_1)} \]
assumption: fuzzy membership functions piecewise linear

output set $B'(y)$ represented by sequence of points $(y_1, z_1), (y_2, z_2), \ldots, (y_n, z_n)$

\Rightarrow area under $B'(y)$ and weighted area can be determined additively piece by piece

\Rightarrow linear equation $z = my + b$ \Rightarrow insert (y_i, z_i) and (y_{i+1}, z_{i+1})

\Rightarrow yields m and b for each of the $n-1$ linear sections

\Rightarrow

Defuzzification

- Center of Area (COA)
 - developed as an approximation of COG
 - let \tilde{y}_k be the COGs of the output sets $B'_k(y)$:

$$\tilde{y} = \frac{\sum_k A_k(x_0) \cdot \tilde{y}_k}{\sum_k A_k(x_0)}$$

how to:

assume that fuzzy sets $A_k(x)$ and $B_k(x)$ are triangles or trapezoids

let x_0 be the crisp input value

for each fuzzy rule “IF A_k is X THEN B_k is Y”

determine $B'_k(y) = R(A_k(x_0), B_k(y))$, where $R(.,.)$ is the relation

find \tilde{y}_k as center of gravity of $B'_k(y)$