Computational Intelligence

Winter Term 2010/11

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Swarm Intelligence

Contents

- Ant algorithms
- Particle swarm algorithms
(combinatorial optimization)
(optimization in \mathbb{R}^{n})

Swarm Intelligence

swarms of bird or fish
seeking for food

concepts:

- evaluation of own current situation
- comparison with other conspecific
- imitation of behavior of successful conspecifics
\Rightarrow audio-visual communication
dortmund

Swarm Intelligence

ant algorithms (ACO: Ant Colony Optimization)

paradigm for design of metaheuristics for combinatorial optimization
stigmergy $=$ indirect communication through modification of environment
~ 1991 Colorni / Dorigo / Maniezzo: Ant System (also: 1. ECAL, Paris 1991)
Dorigo (1992): collective behavor of social insects (PhD)
some facts:

- about 2% of all insects are social
- about 50% of all social insects are ants
- total weight of all ants = total weight of all humans
- ants populate earth since 100 millions years
- humans populate earth since 50.000 years
double bridge experiment (Deneubourg et al. 1990, Goss et al. 1989)

finally: all ants use the shorter bridge!

How does it work?

- ants place pheromons on their way
- routing depends on concentration of pheromons

more detailed:

ants that use shorter bridge return faster
\Rightarrow pheromone concentration higher on shorter bridge
\Rightarrow ants choose shorter bridge more frequently than longer bridge
\Rightarrow pheromon concentration on shorter bridge even higher
positive feedback loop
\Rightarrow even more ants choose shorter bridge
\Rightarrow a.s.f.

Swarm Intelligence

Ant System (AS) 1991

combinatorial problem:

- components $\mathrm{C}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}\right\}$
- feasible set $F \subseteq 2^{C}$
- objective function f: $2^{\mathrm{C}} \rightarrow \mathbb{R}$
ants $=$ set of concurrent (or parallel) asynchronous agents move through state of problems

partial solutions of problems
\Rightarrow caused by movement of ants the final solution is compiled incrementally

Swarm Intelligence

movement: stochastic local decision
(2 parameters)

while constructing the solution (if possible), otherwise at the end:

1. evaluation of solutions
2. modification of 'trail value' of components on the path
feedback

Swarm Intelligence

ant \mathbf{k} in state \mathbf{i}

- determine all possible continuations of current state i
- choice of continuation according to probability distribution p_{ij}

$$
\mathrm{p}_{\mathrm{ij}}=\mathrm{q}(\text { attractivity, amount of pheromone })
$$

heuristic is based on a priori desirability of the move

a posteriori desirability of the move „how rewarding was the move in the past?"

- update of pheromone amount on the paths:
as soon as all ants have compiled their solutions good solution \nearrow increase amount of pheromone, otherwise decrease

Combinatorial Problems (Example TSP)

TSP:

- ant starts in arbitrary city i
- pheromone on edges (i, j): τ_{ij}
- probability to move from i to j: $\quad p_{i j}^{(t)}=\frac{\tau_{i j}^{\alpha} \eta_{i j}^{\beta}}{\sum_{k \in \mathcal{N}_{i}(t)} \tau_{i k}^{\alpha} \eta_{i k}^{\beta}} \quad$ for $j \in \mathcal{N}_{i}(t)$
- $\eta_{\mathrm{ij}}=1 / \mathrm{d}_{\mathrm{ij}} ; \mathrm{d}_{\mathrm{ij}}=$ distance between city i and j
- $\alpha=1$ and $\beta \in[2,5]$ (empirical), $\rho \in(0,1)$ "evaporation rate"
- $\mathcal{N}_{\mathrm{i}}(\mathrm{t})=$ neighborhood of i at time step t (without cities already visited)
- update of pheromone after μ journeys of ants: $\quad \tau_{i j}:=\rho \tau_{i j}+\sum_{k=1}^{\mu} \Delta \tau_{i j}(k)$
- $\Delta \tau_{\mathrm{ij}}(\mathrm{k})=1$ / (tour length of ant k), if ($\left.\mathrm{i}, \mathrm{j}\right)$ belongs to tour

Swarm Intelligence

two additional mechanisms:

1. trail evaporation
2. demon actions (for centralized actions; not executable in general)

Ant System (AS) is prototype
tested on TSP-Benchmark \rightarrow not competitive
\Rightarrow but: works in principle!
subsequent: 2 targets

1. increase efficiency (\rightarrow competitiveness with state-of-the-art method)
2. better explanation of behavior

1995 ANT-Q (Gambardella \& Dorigo), simplified: 1996 ACS ant colony system

Particle Swarm Optimization (PSO)

paradigm for design of metaheuristics for continuous optimization
developed by Russel Eberhard \& James Kennedy (~1995)

concepts:

- particle (x, v) consists of position $\mathrm{x} \in \mathbb{R}^{\mathrm{n}}$ and "velocity" (i.e. direction) $\mathrm{v} \in \mathbb{R}^{\mathrm{n}}$
- PSO maintains multiple potential solutions at one time
- during each iteration, each solution/position is evaluated by an objective function
- particles "fly" or "swarm" through the search space
to find position of an extremal value returned by the objective function

Swarm Intelligence

PSO update of particle $\left(x_{i}, v_{i}\right)$ at iteration t

1st step:
$v_{i}(t+1)=\omega v_{i}(t)+\gamma_{1} R_{1}\left(x_{b}^{*}(t)-x_{i}(t)\right)+\gamma_{2} R_{2}\left(x^{*}(t)-x_{i}(t)\right)$

Swarm Intelligence

PSO update of particle $\left(x_{i}, v_{i}\right)$ at iteration t

1st step:
$v_{i}(t+1)=\omega v_{i}(t)+\gamma_{1} R_{1}\left(x_{b}^{*}(t)-x_{i}(t)\right)+\gamma_{2} R_{2}\left(x^{*}(t)-x_{i}(t)\right)$

new
direction

old direction

direction from
$x_{i}(t)$ to $x_{b}^{*}(t)$

direction from $x_{i}(t)$ to $x^{*}(t)$
$\omega \quad: \quad$ inertia factor, often $\in[0.8,1.2]$
$\gamma_{1}:$ cognitive factor, often $\in[1.7,2.0]$
γ_{2} : social factor, often $\in[1.7,2.0]$
R_{1} : positive r.v., often $r_{1} \sim U[0,1]$
R_{2} : positive r.v., often $r_{2} \sim U[0,1]$

Swarm Intelligence

PSO update of particle $\left(x_{i}, v_{i}\right)$ at iteration t

2nd step:

$\underbrace{x_{i}(t+1)}_{$| new |
| :---: |
| position |$}=\underbrace{x_{i}(t)}_{$| old |
| :---: |
| position |
| direction |$}+\underbrace{v_{i}(t+1)}$

Note the similarity to the concept of mutative step size control in EAs: first change the step size (direction), then use changed step size (direction) for changing position.

