

Computational Intelligence

Winter Term 2010/11

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Contents

- Ant algorithms
- Particle swarm algorithms

- (combinatorial optimization)
- (optimization in \mathbb{R}^n)

concepts:

- evaluation of own current situation
- comparison with other conspecific
- imitation of behavior of successful conspecifics

concepts:

- communication / coordination by means of "stigmergy"
- reinforcement learning
 - → positive feedback

⇒ audio-visual communication

⇒ olfactoric communication

ant algorithms (ACO: Ant Colony Optimization)

paradigm for design of metaheuristics for combinatorial optimization

stigmergy = indirect communication through modification of environment

~ 1991 Colorni / Dorigo / Maniezzo: Ant System (also: 1. ECAL, Paris 1991) Dorigo (1992): collective behavor of social insects (PhD)

some facts:

- about 2% of all insects are social.
- about 50% of all social insects are ants
- total weight of all ants = total weight of all humans
- ants populate earth since 100 millions years
- humans populate earth since 50.000 years

double bridge experiment (Deneubourg et al. 1990, Goss et al. 1989)

initially:

both bridges used equally often

finally:

all ants run over single bridge only!

finally:

all ants use the shorter bridge!

How does it work?

- ants place pheromons on their way
- routing depends on concentration of pheromons

more detailed:

ants that use shorter bridge return faster

- ⇒ pheromone concentration higher on shorter bridge
- ⇒ ants choose shorter bridge more frequently than longer bridge
- ⇒ pheromon concentration on shorter bridge even higher
- ⇒ even more ants choose shorter bridge
- \Rightarrow a.s.f.

positive feedback loop

Ant System (AS) 1991

combinatorial problem:

- components $C = \{c_1, c_2, ..., c_n\}$
- feasible set $F \subseteq 2^C$
- objective function f: $2^C \to \mathbb{R}$

ants = set of concurrent (or parallel) asynchronous agents
move through state of problems

partial solutions of problems

⇒ caused by movement of ants the final solution is compiled incrementally

movement: stochastic local decision

while constructing the solution (if possible), otherwise at the end:

- 1. evaluation of solutions
- 2. modification of 'trail value' of components on the path

ant k in state i

- determine all possible continuations of current state i
- choice of continuation according to probability distribution p_{ij}

$$p_{ij} = q(attractivity, amount of pheromone)$$

heuristic is based on *a priori* desirability of the move

a posteriori desirability of the move "how rewarding was the move in the past?"

update of pheromone amount on the paths:
 as soon as all ants have compiled their solutions
 good solution / increase amount of pheromone, otherwise decrease /

Combinatorial Problems (Example TSP)

TSP:

- ant starts in arbitrary city i
- pheromone on edges (i, j): τ_{ii}

• pheromone on edges (i, j):
$$\tau_{ij}$$
• probability to move from i to j:
$$p_{ij}^{(t)} = \frac{\tau_{ij}^{\alpha} \, \eta_{ij}^{\beta}}{\sum\limits_{k \in \mathcal{N}_i(t)} \tau_{ik}^{\alpha} \, \eta_{ik}^{\beta}} \quad \text{for } j \in \mathcal{N}_i(t)$$

- $\eta_{ii} = 1/d_{ii}$; $d_{ii} = distance$ between city i and j
- α = 1 and β \in [2, 5] (empirical), ρ \in (0,1) "evaporation rate"
- $\mathcal{N}_{i}(t)$ = neighborhood of i at time step t (without cities already visited)
- update of pheromone after μ journeys of ants: $\tau_{ij} := \rho \, \tau_{ij} + \sum_{i=1}^{\mu} \Delta \tau_{ij}(k)$
- $\Delta \tau_{ii}(k) = 1$ / (tour length of ant k), if (i,j) belongs to tour

two additional mechanisms:

- 1. trail evaporation
- 2. demon actions (for centralized actions; not executable in general)

Ant System (AS) is prototype

tested on TSP-Benchmark → not competitive

⇒ but: works in principle!

subsequent: 2 targets

- 1. increase efficiency (→ competitiveness with *state-of-the-art* method)
- better explanation of behavior

1995 ANT-Q (Gambardella & Dorigo), simplified: 1996 ACS ant colony system

Swarm Intelligence

Particle Swarm Optimization (PSO)

abstraction from fish / bird / bee swarm

paradigm for design of metaheuristics for continuous optimization

developed by Russel Eberhard & James Kennedy (~1995)

concepts:

- particle (x, v) consists of position $x \in \mathbb{R}^n$ and "velocity" (i.e. direction) $v \in \mathbb{R}^n$
- PSO maintains multiple potential solutions at one time
- during each iteration, each solution/position is evaluated by an objective function
- particles "fly" or "swarm" through the search space to find position of an extremal value returned by the objective function

PSO update of particle (x_i, v_i) at iteration t

1st step:

$$v_i(t+1) = \omega \ v_i(t) + \gamma_1 \ R_1 \ (x_b^*(t) - x_i(t)) + \gamma_2 \ R_2 \ (x^*(t) - x_i(t))$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

PSO update of particle (x_i, v_i) at iteration t

1st step:

$$v_i(t+1) = \omega v_i(t) + \gamma_1 R_1 (x_b^*(t) - x_i(t)) + \gamma_2 R_2 (x^*(t) - x_i(t))$$

new old direction

direction from $x_i(t)$ to $x_h^*(t)$

direction from $x_i(t)$ to $x^*(t)$

 ω : inertia factor, often $\in [0.8, 1.2]$

 γ_1 : cognitive factor, often $\in [1.7, 2.0]$

 γ_2 : social factor, often $\in [1.7, 2.0]$

 R_1 : positive r.v., often $r_1 \sim U[0,1]$

 R_2 : positive r.v., often $r_2 \sim U[0,1]$

PSO update of particle (x_i, v_i) at iteration t

2nd step:

new old new position position direction

Note the similarity to the concept of mutative step size control in EAs: first change the step size (direction), then use changed step size (direction) for changing position.