

Design of Evolutionary Algorithms	Lecture 11	Design of Evolutionary Algorithms	Lecture 11
ad 2) design guidelines for variation operators		ad 2) design guidelines for variation operators in	n practice
 a) reachability every x ∈ X should be reachable from arbitrary x₀ ∈ X after finite number of repeated variations with positive b) unbiasedness unless having gathered knowledge about problem variation operator should not favor particular subsets ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting s known from theory: weaken variation strength when a strength when	e probability bounded from 0 of solutions shape of distributions; approaching optimum	binary search space $X = \mathbb{B}^n$ variation by k-point or uniform crossover and subset a) <i>reachability</i> : regardless of the output of crossover we can move from $x \in \mathbb{B}^n$ to $y \in \mathbb{B}^n$ in 1 step with $p(x, y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} >$ where H(x,y) is Hamming distance between x an Since min{ $p(x,y): x, y \in \mathbb{B}^n$ } = $\delta > 0$ we are done	quent mutation probability > 0 id y.

Design of Evolutionary Algorithms	Lecture 11	Design of Evolutionary Algorithms	Lecture 11
b) unbiasedness		<u>Formally:</u>	
don't prefer any direction or subset of points without reason		Definition:	
\Rightarrow use maximum entropy distribution for sampling!		Let X be discrete random variable (r.v.) with The quantity $H(X) = -\sum_{k \in K}$	with $p_k = P\{ X = x_k \}$ for some index set K. $p_k \log p_k$
properties:		is called the entropy of the distribution $f_{v}(\cdot)$ then the entropy is given by	of X. If X is a continuous r.v. with p.d.f.
- distributes probability mass as uniform as possible		(m)	
- additional knowledge can be included as constraints:		$H(X) = -\int_{-\infty}^{\infty} f_X$	$f_X(x) \log f_X(x) dx$
\rightarrow under given constraints sample as uniform as possible		The distribution of a random variable X for which H(X) is maximal is termed a <i>maximum entropy distribution</i> .	
technische universität G. Rudolph: Co dortmund	mputational Intelligence • Winter Term 2010/11 5	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2010/11 6
Excursion: Maximum Entropy Distributions	Lecture 11	Excursion: Maximum Entropy Distri	butions Lecture 11
Knowledge available: Discrete distribution with support { $x_1, x_2,, x_n$ } with x_1	< X ₂ < X _n < ∞	$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k \log p_k + a \right)$	$\sum_{k=1}^{n} p_k - 1 ight)$
	$= P\{X = x_k\}$	partial derivatives:	
\Rightarrow leads to nonlinear constrained optimization problem:	$= P\{X = x_k\}$	partial derivatives: $\partial L(p,a)$ 1 - Let a	$\frac{1}{a} \frac{a-1}{a}$
\Rightarrow leads to nonlinear constrained optimization problem:	$= P\{X = x_k\}$	partial derivatives: $\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0$	$\Rightarrow p_k \stackrel{!}{=} e^{a-1}$
\Rightarrow leads to nonlinear constrained optimization problem: $-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$ s.t. $\sum_{k=1}^{n} p_k = 1$	$= P\{X = x_k\}$	partial derivatives: $\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0$ $\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$	$\Rightarrow p_k \stackrel{!}{=} e^{a-1}$ $p_k = \frac{1}{n}$
$\Rightarrow \text{ leads to nonlinear constrained optimization problem:}$ $-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$ s.t. $\sum_{k=1}^{n} p_k = 1$ solution: via Lagrange (find stationary point of Lagrangian) $L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$	$= P\{X = x_k\}$	partial derivatives: $\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0$ $\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$ $\Rightarrow \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1}$	$\Rightarrow p_k \stackrel{!}{=} e^{a-1}$ $\Rightarrow p_k = \frac{1}{n}$ $= 1 \Leftrightarrow e^{a-1} = \frac{1}{n}$ $= \frac{1}{n}$
$\Rightarrow \text{ leads to nonlinear constrained optimization problem:}$ $-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$ s.t. $\sum_{k=1}^{n} p_k = 1$ Solution: via Lagrange (find stationary point of Lagrangian) $L(p, a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$ technische universität G. Rudolph: Co	$= P\{X = x_k\}$ an function) mputational Intelligence • Winter Term 2010/11	partial derivatives: $\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0$ $\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$ $\Rightarrow \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1}$	$\Rightarrow p_{k} \stackrel{!}{=} e^{a-1}$ $\downarrow p_{k} = \frac{1}{n}$ $\lim_{k \to \infty} p_{k} = \frac{1}{n}$ $\lim_{k \to \infty} p_{k} = \frac{1}{n}$

Excursion: Maximum Entropy Distributions Lecture 11

Excursion: Maximum Entropy Distributions

Lecture 11

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $p_k = P \{ X = k \}$ and E[X] = v

 \Rightarrow leads to nonlinear constrained optimization problem:

$$\begin{aligned} &-\sum_{k=1}^{n} p_k \log p_k \quad \to \max! \\ &\text{s.t.} \quad \sum_{k=1}^{n} p_k = 1 \qquad \text{and} \qquad \sum_{k=1}^{n} k p_k = \nu \end{aligned}$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

U technische universität

G. Rudolph: Computational Intelligence • Winter Term 2010/11 9

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=1}^n k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=1}^n p_k = e^{a-1} \sum_{k=1}^n (e^b)^k \stackrel{!}{=} 1$$
(continued on next slide)

U technische universität dortmund G. Rudolph: Computational Intelligence - Winter Term 2010/11 10

G. Rudolph: Computational Intelligence • Winter Term 2010/11 12

Lecture 11 **Excursion: Maximum Entropy Distributions**

Knowledge available:

technische universität

Knowledge available:

dortmund

Discrete distribution with support { 1, 2, ..., n } with E[X] = v and V[X] = η^2

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu \quad \text{and} \quad \sum_{k=1}^{n} (k-\nu)^2 p_k = \eta^2$$

solution: in principle, via Lagrange (find stationary point of Lagra

but very complicated analytically, if possible at all

 \Rightarrow consider special cases only

Excursion: Maximum Entropy Distributions

G. Rudolph: Computational

Lecture 11

Lecture 11

Special case: n = 3 and E[X] = 2 and $V[X] = \eta^2$

Linear constraints uniquely determine distribution:

$$\begin{array}{c} 1. \quad p_{1} + p_{2} + p_{3} = 1 \\ 1. \quad p_{1} + 2p_{2} + 3p_{3} = 2 \\ 1. \quad p_{1} + 2p_{2} + 3p_{3} = 2 \\ 1. \quad p_{1} + 0 + p_{3} = \eta^{2} \\ 1. \quad p_{1} + 0 + p_{3} = \eta^{2} \\ 1. \quad p_{1} + 0 + p_{3} = \eta^{2} \\ 1. \quad p_{1} + 0 + p_{3} = \eta^{2} \\ 1. \quad p_{1} + 0 + p_{3} = \eta^{2} \\ 1. \quad p_{2} + 2p_{3} = 1 \\ 1. \quad p_{3} = \frac{\eta^{2}}{2} \\ 1. \quad p_{3} = \frac{\eta^{2}}{2} \\ 1. \quad p_{3} = \frac{\eta^{2}}{2} \\ 2. \quad p_{3} = \frac{\eta^{2}}{2} \\ 1. \quad p_{3} = \frac{\eta$$

Excursion: Maximum Entropy Distributions

Lecture 11

$$L(p, a, b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1 \right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu \right)$$

partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=0}^{\infty} p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=0}^{\infty} k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=0}^{\infty} p_k = e^{a-1} \sum_{k=0}^{\infty} (e^b)^k \stackrel{!}{=} 1$$

(continued on next slide)

technische universität τ dortmund

Discrete distribution with unbounded support { 0, 1, 2, ... } and E[X] = v

 \Rightarrow leads to <u>infinite-dimensional</u> nonlinear constrained optimization problem:

$$\begin{aligned} &-\sum_{k=0}^{\infty} p_k \log p_k \quad \to \max! \\ &\text{s.t.} \quad \sum_{k=0}^{\infty} p_k = 1 \quad \text{and} \quad \sum_{k=0}^{\infty} k p_k = \nu \end{aligned}$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

technische universität dortmund

Excursion: Maximum Entropy Distributions

$$e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}$$
set $q = e^b$ and insists that $q < 1 \Rightarrow \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ insert

$$\Rightarrow p_k = (1-q) q^k \text{ for } k = 0, 1, 2, \dots \text{ geometrical distribution}$$
It remains to specify q; to proceed recall that $\sum_{k=0}^{\infty} k q^k = \frac{q}{(1-q)^2}$

Excursion: Maximum Entropy Distributions

$$\Rightarrow p_k = (1-q) q^k \text{ for } k = 0, 1, 2, \dots \text{ geometrical distribution}$$

$$= p_k = \frac{1}{1-q} (1-\frac{1}{\nu+1})^k$$

$$\Rightarrow p_k = \frac{1}{\nu+1} \left(1-\frac{1}{\nu+1}\right)^k$$

